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Shortcomings of the standard model

The standard model is extremely successful,
but leaves us wondering about the origin of:

® V Mass
e cosmological inflation

e dark matter

e matter-antimatter asymmetry

Could we economically tie them all together ?

We introduce new ideas for doing so, that transcend the
particular model | present here.



“Affleck-Dine” Inflation

Previously we introduced Affleck-Dine inflation,
where complex inflaton can produce a particle
asymmetry during inflation 2]

V=mlgl" + Alel* + ix"(¢* — ¢™)
With nonminimal coupling E|¢|*R to gravity,
this can satisfy Planck constraints on CMB

temperature fluctuations.

New idea: inflaton generates the asymmetry itself, during

inflation. But it still needs to get transferred to the SM
sector: this is where HNLs come In.

J.Cline, McGill U. - p. 3



Nonstandard leptogenesis

Suppose ¢ carries lepton number L = 2.
Im ¢

= Re ¢

)

7z
A

Asymmetry in ¢ — ¢* (lepton humber) created
during inflation, while field bends in complex
plane. Transfer it to heavy neutral leptons
(HNLs)—GeV-scale quasi-Dirac sterile
neutrinos, by inflaton decay:

Lepton asymmetry is transferred to HNLs. They
pass it on to the SM, and the dark matter HNL.

New features: DM abundance is
very simply related to the lepton
asymmetry since one of the N'’s
is the DM.

HNLs must be (quasi-)Dirac, to
avoid washing out the
asymmetry.

CP violation is spontaneous —
inflationary initial conditions. No
new CP violation is needed.

So it is consistent to leave the
strong CP problem out of our
list.
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NHLs and neutrinos

HNLs can have mass mixing with vs via Higgs:

o m,, n;v 0 V|

Ni+'1.l ! — nyw 0 My | NS
vii "H R

0 My O N,

Minimal flavor violation*fansatz: we assume
that n;; aligns with the v Yukawa couplings:

=
R; 5 — yV,gVR,."HLjr Wv,ij = k‘q"":ér"

Yo H
Assume Vg ; are superheavy, integrate them

out to get m,.. Take 3 HNLs to be degenerate:
approximate flavor symmetry, weakly broken
by n,,;. MFV makes theory highly predictive,

allows one HNL to be dark matter.
* n, breaks dark SU(3) lepton flavor symmetry

Novel ideas:

Heavy RH vRr’s
are integrated out;
they are above
the inflation scale.

Yukawas of N'’s
are aligned with
those of usual
I/R’S.

This is radiatively
stable: technically
natural.

1, matrix is
rank 2: one N; is
stable DM.

3 HNLs are nearly
degenerate, due
to approximate
dark flavor
symmetry
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HNL as dark matter

If lightest v is massless, then n, ;; has vanishing

eigenvalue: gives one HNL (') that is
absolutely stable—DM candidate! But we need
new annihilation channel. Add a light singlet

scalar s with g; s\ N; + Ajss?h? + A (s*— v52)2 :

______ S N q |.L,5T, see
V or >————

Novel: stability of DM is tied to masslessness of lightest v.
Light singlet is mandatory, otherwise DM is too abundant.
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DM Relic Density: asymmetric, symmetric or mixed DM

005 01 015 02 0 01 02 03 04 05 02 04 06 08 1 12 14
g.s g.s gS

Contours of Qpy. DM can be asymmetric, symmetric or in between. Can be heavier (center, right) or
lighter (left) than singlet. If asymmetric, mpy ~ 4.5 GeV, and DM density ~ cosmic v asymmetry.

Novel: DM can be hybrid of symmetric + asymmetric
without significant fine tuning.
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N -v interaction parameters

We can solve for 1, coupling matrix, given v mass spectrum m,,,

1/2

o sz' U—l

Mvij = | = PMNS,ij
Hy

up to the unknown 1, factor. They are bounded by EWPD
constraints:

4.5GeV\? .
fy, > O.6MeV><( © ) . hormal hierarchy
My
0 0.66 —0.32 —0.2974
My
voil S 1071 72 — 0.051 .
el S 0 0.72—0.053 2.1 X<4.5Ge\/)
0 —0.79—0.041 1.9

Mixing of No + N3 with v, U, = (3, |Uy|*)'/2, is bounded by

U. < 0.003, U, <0.009, U, < 0.008
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HNL constraints and discovery

If my, < me, beam dump constraints bound HNL
mixing U, ; with v’s, from N — vff. Otherwise
N — vs; precision electroweak bounds from
PMNS unitarity still give constraint (EWPD).

Novel: Can relax
to EWPD if

N — svis
dominant decay
channel and s
escapes detector.

And HNLs must
couple
simultaneously to
all three SM
flavors.
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EWPD

N-N oscillations

Limits |n,| < 1073. HNLs get small Majorana

mass 6M ~ r}imv ~ 107> eV from light vs
—> N-N oscillations observable at SHiP,!"!

beam

l-'l
= e ey
-'--'--'--'-
e
e = e
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via like-sign leptons.

[3] J.-L. Tastet and I. Timiryasov, “Dirac vs. Majorana
HNLs (and their oscillations) at SHiP,” JHEP 04 (2020)
005, arXiv:1912.05520 [hep-ph].
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sin f,

Light scalar constraints

== Generic constraints on
h,s singlet apply, plus DM direct
nucleon: detection from s exchange:

1072 ,

N

—; es:Ins/ my,

107°

10°

ms [GeV]

2 ~v 2 __1p2 2. < id fi '
my = 2X\sv; — 505m;;need 0s < ms/my, to avoid fine tuning. L Glne, MeG U —p. 11



Light scalar constraints

N — Generic constraints on
h,s singlet apply, plus DM direct
RHELcoM detection from s exchange:
]-O[}' ! T ' T N TR F i T T -**.m .
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If ms > 2m, the direct detection constraints are greatly relaxed
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Light scalar constraints

NN Generic constraints on
h,s singlet apply, plus DM direct
mucion - detection from s exchange:
107?

';(3§=DJJTnh

L CHAR)

1D—3
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e

10-4 Legd

SHiP

. w=
1 : : :
0 Light singlet can explain
s, Se w1 KOTO ar(}oma!ous |
’ 0y ’ K, — m’vv signal in
10 8 .
. blue region above
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Higgs invisible width

We must also be sure that BR(h — ss) < 20%. Scalar
potential:

)\ )\ S )\S
V(hys) = (0 = o*)? + TR0 —0?)(s® —of) + T(s” = 0)?
which gives
~ ~ VUg
mg = 2)\303 — %Hgm%, 0, = )\hsm—%

The invisible width is Ty, 2 %75 (4% 1 1)* leading to mild
constraint

0, (493 n 3) < 0.05

(OF

Just need that v, Is not too small.
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Astrophysical implications

Indirect detection constraints are weak because N'N’ — ss and
N'N’" — ff are velocity-suppressed.

Dark matter self-interactions can be
cosmologically important (structure formation)

T T T ! T g T : _22
CRESST surface my [MeV] |
_ =2.0
P e e SO +1.8
i CDm _'_"""""*----—-....‘_ 1
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=9 R I
s | - 143
© | Interesting N | =
- region CRESST-III l12¢
— constraints
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A B=1x 1074 .
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" o/my=01cm*fg e 0, =3x 107"
| i _|.‘ | A IS ¢ _I_ Ul
al 0.2 0.3 0.4 0.5 0.6 ‘
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this assumes ~ symmetric
DM with light HNL

Another region with large
o/m - IS asymmetric DM
with mpyr ~ 4.5 GeV,

0s <6 x 1076,

ms ~ 200 — 300 MeV.
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Dark matter decay

If N/ has tiny mixing 6, to v, it can decay, N’ — vs if
ms < mar, OF N' — vlT0~ if mg > my:

v Vv ]

g 7 ]

CMB constrains the lifetime 7 > 10%*s (slatyer & Wu, 1610.06933)

21cm signal is even more

sensitive: EDGES constrains 0% [ L — Planck
27 : ot
7 2 10" 8 (Clark et al. 1803.09390) b felin [ oo Tas-100mK
0 _ . — - - _ l?:\\‘ ”I:,. ‘.,..\\\ m=u= To15=50mK
L — 5 b - *e
L [%) e
0
— L f
£ -toog 4 tom [5)
s — 2x10% |
= -150 q ‘f'.' == 1026
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r | = 1028 Mpwm [GGV]
10?
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Lepton flavor violation

Typical studies assume HNL couplings to only one flavor at a time.
We suggest n, has large off-diagonal entries, leading to u — e,
u — 3e,

Could be probed in future experiments Mu2e (Fermilab) and
COMET (KEK).
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LFV @ colliders

Large off-diagonal n, couplings also lead to LFV B. and B decays,

N U 3
Q_)va\/\'\ .
N UN2 l N
+
B gle\ 7t+

Do)

Cvetic & Kim, 1606.04140:
LHCDb produces many B.’s, with potential to observe first process,
and Belle Il may probe the second.

Not novel in itself, but our framework motivates Uy, ~ Un-.
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Naturalness 1

Our model is technically natural. Flavor symmetries are weakly
broken via MFV principle:

f

. Ty g Ty
N; masses: Mpndi; — Mnd;j + O ( 1672 )

HNL masses remain nearly degenerate under loop corrections.

f

DM stability: 7, — , + O (n,, b m)
1672

Vanishing eigenvalue of 7, is preserved under renormalization
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Naturalness 11

But isn’t the light singlet fine-tuned? Not necessarily!

1/2 )
Omg = [S ----- @ ----- S} ~ j—mN ~ 30 MeV

T

along “mixed” branch of DM relic density;

[ PN =] 1/2
" h ) VA VO, m?
OMmg = |g----2--2-__g ~ hs my = > h o~ 100 MeV
A 4 4m  \/VVg

for 8, in KOTO region and v ~ v. Light singlet is natural. Even at
inflaton threshold, m,, ~ 101 GeV,

Y2 959y 6
omy = [ (|~ T me ~ 1070 Ty

where T ~ 10~*g,M,, is the reheating temperature after inflation.
We just need Tr < 100 TeV.
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Naturalness 111

The only real naturalness problem is the usual one with the SM
Higgs. There is only one relevant threshold, m, .,

1/2 1/2  3/2
omp = (M L) h ~ o, B vr
Adr R iy

using seesaw formula m, = y2v*/m,,.. It was suggested (Brivio, Trott
1703.10924) this could explain the weak scale, by choosing

My, ~ 107 GeV.

Alternatively, suppose m,,, ~ v?/m, ~ 10> GeV; could some
symmetry above this scale can protect m;?
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Summary

We presented a new inflation + leptogenesis mechanism
Two HNLs invoked to transfer lepton asymmetry to the SM.

Their couplings to light v's are determined by the light neutrino
masses/mixings up to one free parameter

HNLs discoverable at SHiP, etc.;: N-N oscillations

Dark matter is third ~ GeV HNL; can be asymmetric, symmetric or
mixture; discoverable by direct detection

DM stability is linked to vanishing m,,

A light scalar with Higgs portal is needed to get correct DM
abundance (more economical than light vector); KOTO anomaly

Strong DM self-interactions are marginally allowed

No new fine-tuning problems are introduced J.ine, MGl . p 22
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