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We introduce new ideas for doing so, that transcend the
particular model I present here.
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New idea: inflaton generates the asymmetry itself, during

inflation. But it still needs to get transferred to the SM
sector: this is where HNL’s come in.
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New features: DM abundance is

very simply related to the lepton

asymmetry since one of the N ’s

is the DM.

HNLs must be (quasi-)Dirac, to

avoid washing out the

asymmetry.

CP violation is spontaneous —

inflationary initial conditions. No

new CP violation is needed.

So it is consistent to leave the

strong CP problem out of our

list.

J.Cline, McGill U. – p. 4



Novel ideas:

Heavy RH νR’s

are integrated out;

they are above

the inflation scale.

Yukawas of N ’s

are aligned with

those of usual

νR’s.

This is radiatively

stable: technically

natural.

ην matrix is

rank 2: one Ni is

stable DM.

3 HNL’s are nearly

degenerate, due

to approximate

dark flavor

symmetry
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Novel: stability of DM is tied to masslessness of lightest ν.
Light singlet is mandatory, otherwise DM is too abundant.
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Novel: DM can be hybrid of symmetric + asymmetric
without significant fine tuning.
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N -ν interaction parameters
We can solve for ην coupling matrix, given ν mass spectrum mνi ,

ην,ij =

(

mνi

µ̄ν

)1/2

U−1

PMNS,ij

up to the unknown µ̄ν factor. They are bounded by EWPD
constraints:

µ̄ν > 0.6MeV ×
(

4.5GeV

MN

)2

, normal hierarchy

|ην,ℓi| . 10−4
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Mixing of N2 + N3 with νℓ, Ūℓ = (
∑

i |Uℓi|2)1/2, is bounded by

Ūe < 0.003, Ūµ < 0.009, Ūτ < 0.008
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Novel: Can relax

to EWPD if

N → sν is

dominant decay

channel and s
escapes detector.

And HNL’s must

couple

simultaneously to

all three SM

flavors.
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N -N̄ oscillations
EWPD
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Light scalar constraints

θs=ms/mh
naturalness

m2
s
∼= 2λsv2s − 1

2
θ2sm

2

h
; need θs . ms/mh to avoid fine tuning.
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Light scalar constraints
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If ms > 2mN , the direct detection constraints are greatly relaxed J.Cline, McGill U. – p. 12



Light scalar constraints

θs=ms/mh
naturalness
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Higgs invisible width

We must also be sure that BR(h → ss) . 20%. Scalar
potential:

V (h, s) =
λh

4
(h2 − v2)2 +

λhs

4
(h2 − v2)(s2 − v2s) +

λs

4
(s2 − v2s)

2

which gives

m2
s
∼= 2λsv

2
s − 1

2
θ2sm

2
h
, θs ∼= λhs

vvs

m2
h

The invisible width is Γinv
∼= θ

2

sm
3

h

32π

(

4θs
v
+ 1

vs

)2
leading to mild

constraint

θs

(

4θs +
v

vs

)

. 0.05

Just need that vs is not too small.
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Astrophysical implications

Indirect detection constraints are weak because N ′N̄ ′ → ss and
N ′N̄ ′ → ff̄ are velocity-suppressed.

Dark matter self-interactions can be
cosmologically important (structure formation)

′N ′N

′N′N

s

al
lo

w
ed

 
θ

s

region
interesting

this assumes ∼ symmetric

DM with light HNL

Another region with large

σ/mN′ is asymmetric DM

with mN′ ∼ 4.5GeV,

θs . 6× 10−6,

ms ∼ 200− 300MeV.
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Dark matter decay

If N ′ has tiny mixing θν to ν, it can decay, N ′ → νs if

ms < mN ′, or N ′ → νℓ+ℓ− if ms > mN ′:
ν

N
Z

l

l

ν

s

N N
W

l

l

ν, +

CMB constrains the lifetime τ & 1024 s (Slatyer & Wu, 1610.06933)

21cm signal is even more
sensitive: EDGES constrains
τ & 1027 s (Clark et al., 1803.09390)
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Lepton flavor violation
Typical studies assume HNL couplings to only one flavor at a time.
We suggest ην has large off-diagonal entries, leading to µ → eγ,
µ → 3e,

νe

and µ → e conversion in nuclei,

′q
q q

Could be probed in future experiments Mu2e (Fermilab) and
COMET (KEK).
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LFV @ colliders
Large off-diagonal ην couplings also lead to LFV Bc and B decays,
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W+ N *

Cvetic & Kim, 1606.04140:
LHCb produces many Bc’s, with potential to observe first process,
and Belle II may probe the second.

Not novel in itself, but our framework motivates UNµ ∼ UNτ .
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Naturalness I

Our model is technically natural. Flavor symmetries are weakly
broken via MFV principle:

Ni masses: MNδij → MNδij +O
(

ην mℓ η
†
ν

16π2

)

HNL masses remain nearly degenerate under loop corrections.

DM stability: ην → ην +O
(

ην η
†
ν ην

16π2

)

Vanishing eigenvalue of ην is preserved under renormalization
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Naturalness II
But isn’t the light singlet fine-tuned? Not necessarily!

δms =
[

ss N

]1/2
∼ gs

4π
mN ∼ 30MeV

along “mixed” branch of DM relic density;

δms =





λ
hs

ss
h





1/2

∼
√
λhs

4π
mh =

√
θs

4π

m2

h√
vvs

∼ 100MeV

for θs in KOTO region and vs ∼ v. Light singlet is natural. Even at

inflaton threshold, mφ ∼ 1012 GeV,

δms =
[

ss
N

φ

]1/2
∼ gsgφ

16π2
mφ ∼ 10−6 TR

where TR ∼ 10−4gφMp is the reheating temperature after inflation.
We just need TR < 100TeV.
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Naturalness III
The only real naturalness problem is the usual one with the SM
Higgs. There is only one relevant threshold, mνR ,

δmh =

[

hh R
ν

L

]1/2

∼ yν
4π

mνR ∼ m
1/2
ν m

3/2
νR

4πv

using seesaw formula mν = y2νv
2/mνR . It was suggested (Brivio, Trott

1703.10924) this could explain the weak scale, by choosing

mνR ∼ 107 GeV.

Alternatively, suppose mνR ∼ v2/mν ∼ 1015 GeV; could some
symmetry above this scale can protect mh?

yν
2

h

R
ν∼

h

∼
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Summary
We presented a new inflation + leptogenesis mechanism

Two HNL’s invoked to transfer lepton asymmetry to the SM.

Their couplings to light ν’s are determined by the light neutrino
masses/mixings up to one free parameter

HNL’s discoverable at SHiP, etc.; N -N̄ oscillations

Dark matter is third ∼ GeV HNL; can be asymmetric, symmetric or
mixture; discoverable by direct detection

DM stability is linked to vanishing mν1

A light scalar with Higgs portal is needed to get correct DM
abundance (more economical than light vector); KOTO anomaly

Strong DM self-interactions are marginally allowed

No new fine-tuning problems are introduced J.Cline, McGill U. – p. 22
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