Learning Cosmology from the First Stars

CENTER FOR ASTROPHYSICS

HARVARD & SMITHSONIAN

Julian B. Muñoz

Based on

PRD 100 063538 (2019) PRL 123 131301 (2019) PRD 101 063526 (2020) w/ Dvorkin and Cyr-Racine JCAP 01 (2021) w/ **Sabti** and Blas PRD (2021) w/ **Bohr**, Cyr-Racine, Zavala & Vogelsberger

 $z \approx 10^3$

 $z \approx 10^3$

Image: NASA/CXC/M.WEISS

 $z \approx 10^3$

 $z \approx 20$

Image: NASA/CXC/M.WEISS

 $z \approx 10^3$

 $z \approx 6$

Image: NASA/CXC/M.WEISS

 $z \approx 10^3$

 $z \approx 6$

z=0

Image: NASA/CXC/M.WEISS

 $z \approx 10^3$

Local Universe

z = 0

The pillars of cosmology

There is Dark Matter

Local Universe

z = 0

The pillars of cosmology

There is Dark Matter

This DM is cold and collisionless

 $z \equiv 0$

Local

The pillars of cosmology

There is Dark Matter

This DM is cold and collisionless

There is Dark Energy

Local

z = 0

We've learned a lot, but...

Local Universe

-We don't know what DM or DE are

z=0

We've learned a lot, but...

Local Universe

-We don't know what DM or DE are

-Cosmic tensions (e.g., H₀).

 $z \equiv ()$

 $z \approx 10^3$

Cosmic Dawn and Reionization

 $z \approx 20$

 $z \approx 6$

The 21-cm experimental landscape **Global Signal Cosmic Dawn** Window **EoR** Window 30 45156 \boldsymbol{Z}

The 21-cm experimental landscape

The 21-cm experimental landscape

-Is DM collisionless?

-Is DM cold?

-Is DM collisionless?

-Is DM cold?

-What is the expansion rate of the Universe? H_0 ?

 $z \approx 10^3$

Frequency ν

z = 0

A simulated 21-cm signal

cosmic time

21cmvFAST JBM PRD 2019

A simulated 21-cm global signal

21cmvFAST JBM PRD 2019

21-cm as a thermometer at cosmic dawn

Is DM cold?

Credit: Boehm (IPP Durham)

Credit: Boehm (IPP Durham)

 \mathcal{Z}

cosmic time

 \boldsymbol{Z}

 \boldsymbol{Z}

Forecasted errors in matter power

Forecasted errors in matter power

An example of non-CDM constraint

An example of non-CDM constraint

The 21-cm fluctuations

21-cm Fluctuations (HERA, MWA, LWA, PAPER, SKA,...)

CMB Anisotropies

1 antenna ~100 hours

21-cm Fluctuations (HERA, MWA, LWA, PAPER, SKA,...)

~100 antennae ~1000 hours

Fluctuations do better than global signal

Beyond a cutoff: Self Interactions

DM-DM: Halo profiles, etc.

DM-DR: Power Spectrum

Beyond a cutoff: Self Interactions

DM-DM: Halo profiles, etc.

DM-DR: Power Spectrum

Effective Theory of Structure Formation: ETHOS

Vogelsberger+ 2016 Cyr-Racine+2016

Beyond a cutoff: ETHOS

Vogelsberger+ 2016 Cyr-Racine+2016

Credit: Volgesberger/MIT

Beyond a cutoff: ETHOS

A two-parameter model

The 21-cm global signal in ETHOS

JBM+ ArXiv: 2011.05333

The 21-cm global signal in ETHOS h_{peak} 1.050DAO 0.8 T_{21} [mK] 0.6 -500.4-100 $\overline{40}\,\hbar/\mathrm{Mpc}$ $k_{\text{peak}} = 300 \, h/\text{Mpc}$ 0.2**WDM** 0 25201510 \boldsymbol{Z}

JBM+ ArXiv: 2011.05333

The expansion rate H(z)

A standard ruler during cosmic dawn

21cmvFAST **JBM** PRD 2019 + PRL 2019

A cross section of T_{21}

A cross section of T_{21}

Not quite like the CMB!

21cmvFAST **JBM 2019**

Baryon Acoustic Oscillations

s

Credit: Zosia Rostomian, SDSS-III, BOSS

It's just waves!

Credit: NASA/WMAP

It's just waves!

Credit: NASA/WMAP

Credit: Daniel Eisenstein

A preferred distance scale

Density

 $\vec{v}_{b\chi} = \vec{v}_b - \vec{v}_\chi$

 $z \approx 10^3$

Tseliakhovich & Hirata 2010

Important for the first galaxies

velocity

Average relative velocity

High relative velocity

Tseliakhovich & Hirata 2010

Oleary & McQuinn 2010
A new standard ruler JBM PRL 2019

s

Image: Zosia Rostomian, SDSS-III, BOSS

The expansion rate H(z)

cosmic time

JBM PRL 2019

The expansion rate H(z)

cosmic time

JBM PRL 2019

Applications

- Important to characterize the first galaxies

Applications

- Important to characterize the first galaxies

– It's unexplored territory -> new physics

Applications

- Important to characterize the first galaxies

– It's unexplored territory -> new physics

- H_0 tension

Measuring *r*_s

cosmic time

Measuring *r*_s

cosmic time

HST UV Luminosity Functions

Bouwens+ 2015

Bouwens+ 2015

HST UV Luminosity Functions (Simple theoretical model)

HST UV Luminosity Functions (Simple theoretical model)

-Can we separate cosmology from astrophysics?

HST UV Luminosity Functions

Primordial non-Gaussianity

HST UV Luminosity Functions

JBM, Dvorkin & Cyr Racine PRD 2020 **JBM,** Bohr++ 2020

JBM, Dvorkin & Cyr Racine PRD 2020 **JBM,** Bohr++ 2020

