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Motivation

Existence of Dark Matter (DM) has been confirmed by many
astrophysical and cosmological observations.

Yet, direct detection remains elusive and all the evidence is consistent
with DM interacting solely with gravity.

Cosmological particle production : Feasible mechanism to produce
DM particle candidates interacting only with gravity.

The DM abundance only depends on cosmological history and mass,
independent of couplings to any other degrees of freedom.
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Summary of main results:

Bosonic light (DM) saturates the dark matter abundance for
m ' 1.5 × 10−5eV with an equation of state parameter w ' 10−14

(CDM) and a free streaming length λfs ' 70pc. Its distribution
function is enhanced in the infrared describing a near Bose Condensed
phase.
Fermionic (DM) features a nearly thermal distribution function with
an “emergent temperature” TH = H0

√
ΩR ' 10−36(eV) and

saturates the (CDM) abundance for a mass m ' 108GeV.
After renormalizing the zero point contribution and averaging over
fast interference terms, the energy momentum tensor features the
kinetic fluid form to leading order in the adiabatic expansion during
matter domination.
Fast oscillations from “out” particle-antiparticle interference,
introduce decoherence and the emergence of a coarse grained entropy.
It features a kinetic form and is recognized as the entanglement
entropy as a consequence of gravitational production resulting in
entangled pairs.
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Preliminaries and main assumptions

Spatially flat FRW cosmology in conformal time dη = dt/a :

gµν(η) = a2(η) diag(1,−1,−1,−1) .

The DM particle only interacts with gravity and has no vev.

The cosmological dynamics is considered as a background: during
inflation - the inflaton field and during RD - by SM degrees of
freedom (and/or beyond).

All DM fields are in their Bunch-Davies vacuum state during inflation,
which is closest to Minkowski at short distance.

Light fields: mass � HdS , HdS . 1013GeV (upper bound from
Planck) is the Hubble scale during inflation (taken as de Sitter
space-time).
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Preliminaries and main assumptions (contd)

Inflation
instantaneous−−−−−−−−→
transition

Post-inflation RD era.

Occurs at around ads ' 10−28 � aeq ' 10−4, (from upper bound on
HdS from Planck),

The cosmologically relevant modes are super-Hubble at the end of
inflation, with comoving wavevectors k for which λ� fewmts.

They are causally disconnected and insensitive to the reheating
dynamics post-inflation, thus removing model dependence.
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Cosmological Particle Production

In state : Bunch-Davies vacuum state |0I 〉 during inflation.

Asymptotic out states during (MD): Adiabatic WKB form of mode
function solns: “in” −→ “out” −→ particle production.

We will analyse the energy-momentum tensor at the time when
matter begins to dominate the expansion.

Bogoliubov transformation: a unitary transformation relating the in
and out states, from which we extract the distribution function of the
out particles.
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Complex Scalar Fields : Model

In conformal time and upon conformal field rescaling, the action is given by:

S =

∫
d3xdη

{
χ†

′
χ′ −∇χ†∇χ−M2(η)χ†χ

}
,

M2(η) = m2a2(η)− a′′(η)

a(η)

Time dependent mass → particle production.

χ(~x , η) = 1√
V

∑
~k

[
a~k gk(η) e−i

~k·~x + b†~k g
∗
k (η) e i

~k·~x
]

g
′′

k (η) +
[
k2 + m2 a2(η)− a′′(η)

a(η)

]
gk(η) = 0

Will analyse mode functions corresponding to inflation g<k (η) and RD era(
including adiabatic regime) g>k (η).
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Adiabatic Regime

Late during (RD) and throughout (MD) there exists a wide separation
of time scales: 1

m �
1

H(t) where 1/H(t) : expansion time scale and

1/m :microscopic time scale.

Adiabaticity Condition: during (RD) epoch
a(η) = HR η ; HR ≈ 10−35 eV and ωk(η) =

√
k2 + m2 a2(η) imply

slowly varying frequencies

ω
′
k(η)

ω2
k(η)

� 1 =⇒ a′(η)

ma2(η)
=

HR

ma2(η)
� 1 =⇒ a(η)� 10−17

√
mev

In (RD) the mode functions are combinations of Weber parabolic
cylinder functions with “out” boundary conditions fk(η) with the
asymptotic behavior

fk(η)→ e−i
∫ η ωk (η

′)dη′√
2ωk(η)

defining “particles” in the out state.
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Complex Scalar Fields : Mode Functions

The matching conditions from Inflation to RD (η = ηR):

g<k (ηR) = g>k (ηR)

d

dη
g<k (η)

∣∣∣
ηR

=
d

dη
g>k (η)

∣∣∣
ηR
. (1)

In state mode functions during inflation satisfying Bunch-Davies
vacuum bc. with m << HdS : Hankel functions.

The mode function g>k (η) is a linear combination of Weber parabolic
cylinder functions with “out” particle boundary conditions with
coefficients Ak ;Bk :

g>k (η) = Ak fk(η) + Bk f
∗
k (η)
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Complex Scalar Fields : Distribution Function

A, B are obtained from matching conditions at the inflation-(RD) transition.
Expand field in terms of the solution fk with “out” boundary conditions, and
creation/annihilation operators related to ak , bK by a Bogoliubov
transformation determined by the coefficients Ak ,Bk .

Number of out (anti)particles is obtained from this Bogoliubov
transformation: distribution function

Nk = |Bk |2 = Nk .

Nk ' 1
16
√
2

(
HdS

m

)2
D(z)
z3 , z = k√

2mHR
with D(z) a smooth function with a

rapid fall off for z � 1

Infrared enhancement of Nk ∝ 1/k3 and HdS/m� 1 implies Nk � 1 for
z �

√
HdS/m. Consequence of IR behavior of mode functions for light

scalar fields during inflation. The distribution function during (RD,MD)
“inherits” IR enhancement from inflation.
Like a Bose Einstein condensate: large occupation in a narrow range
of momenta, but without SSB.
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Fermionic Fields : Model

Spinors are defined via a spin connection, but simplify in spatially flat FRW
with a conformal rescaling to a field ψ and Minkowski γµ matrices.

Upon conformal rescaling of fields and in conformal time, the action is given
by:

S =

∫
d3x dη ψ

[
i 6∂ −M(η)

]
ψ ;M(η) = ma(η)

ψ(~x , η) = 1√
V

∑
~k,s

[
b~k,s Us(~k , η) + d†

−~k,s
Vs(−~k , η)

]
e i
~k·~x

Dirac equations : [
i γ0 ∂η − ~γ · ~k −M(η)

]
Us(~k , η) = 0 (2)[

i γ0 ∂η − ~γ · ~k −M(η)

]
Vs(−~k , η) = 0 . (3)

DE is first order in time =⇒ matching condition from inflation to RD :

ψ<(~x , ηR) = ψ>(~x , ηR) .
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Fermionic Fields : Mode Functions

U, V spinors solved exactly:

Inflation (IN state) : Hankel Functions
RD (OUT state with adiabatic BC) : Parabolic Cylinder functions.

Matching conditions imply :

U<s (~k , ηR) = U>s (~k , ηR) , (4)

V<
s (−~k , ηR) = V>

s (−~k , ηR) . (5)

During (RD) :

U>s (~k, η) = Ak,s Us(~k , η) + Bk,s Vs(−~k, η) (6)

V>
s (−~k , η) = Ck,s Vs(−~k , η) + Dk,s Us(~k, η) . (7)

with Us(~k , η) ; Vs(−~k, η) spinor solns during RD: combinations of parabolic
cylinder functions with asymptotic “out” particle/antiparticle BC:

Us(~k , η)→∝ e−i
∫ η ωk (η

′) dη′ ; Vs(~k , η)→∝ e i
∫ η ωk (η

′) dη′ .
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Fermionic Fields : Distribution Function

Use matching conditions from inflation to (RD), obtain the coefficients
above. Expand the Fermi field in terms of the solutions with OUT boundary
conditions with b̃ , d̃ as creation/annihilation operators (OUT), :

ψout(~x , η) =
1√
V

∑
~k,s

[
b̃~k,s Us(~k , η) + d̃ †

−~k,s
Vs(−~k, η)

]
e i
~k·~x

b̃ , d̃ are related to the original b , d via a Bogoliubov transformation
determined by the coefficients A,B,C ,D.

Number of asymptotic (anti)particles in BD vacuum: distribution function

〈0I |b̃†~k,s b̃~k,s |0I 〉 = 〈0I |d̃†−~k,s d̃−~k,s |0I 〉 = |Bk,s |2 ≡ Nk

We find a nearly thermal spectrum but w/o an event horizon!!

Nk = |Bk,s |2 =
1

2

[
1−

(
1− e

− k2

2mTH

)1/2]
;TH =

HR

2π
' 10−36 eV
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Energy Momentum Tensor

Tµν = −dSM/dgµν
Expand the fields in terms of the creation/annihilation operators and
mode functions with ”OUT” BC.
Take the expectation value of Tµν in the IN state: Heisenberg picture.

These expectation values feature: i) a vacuum term, ii): an interference
term between asymptotic “out particle/antiparticle” modes, and iii:) the
particle production contribution determined by the distribution function.

The vacuum term features zero-point UV divergent contributions and are
absorbed into a renormalization : Cosmological constant, Newton’s constant
plus corrections to Einstein-Hilbert action proportional to higher curvature
terms.

The interference terms oscillate rapidly on the short time scale 1/m, thus
averaging out on the longer time scale 1/H, with H � m consistent with
the adiabatic approximation.

On the long time scale and to leading adiabatic order, 〈0I |Tµν |0I 〉 is of the
kinetic fluid form and determined by distribution functions given by Nk .
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Density Matrix : From Pure to mixed state

the IN state |0I 〉 is a superposition of back-to-back “OUT”
entangled particle-antiparticle pairs with amplitudes determined by
Bogoliubov coeffs. In Schroedinger picture

|0I 〉 = Π~k

∞∑
n~k=0

Cn~k (k , η) |n~k ; n−~k〉 (8)

Cn~k (k, η) ∝ e
2i n~k

∫ η
ηi
ωk (η

′) dη′ × Bogoliubovs

Density matrix describes a pure state ρS(η) = |0I 〉〈0I |. In the OUT
basis, it features off-diagonal elements: particle-antiparticle
interference with very fast oscillations (time scales 1/m), much
shorter than the adiabatic time scales of the diagonal matrix elements
' 1/H.

These rapid oscillations lead to decoherence by dephasing (averaging
out of the off diagonal elements), leaving a diagonal density matrix in
the out basis: a mixed state.
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Entropy from Decoherence

The Von-Neumann entropy associated with this mixed state,
S = Trρ log ρ is exactly the entanglement entropy obtained by
tracing over one member of the particle-antiparticle pair in the
density matrix −→ reduced density matrix ρr = Trn ρ.

The Von-Neumann Entropy is completely determined by the
Bogoliubov coefficients and the occupation number of the
gravitationally produced pairs and is similar to the kinetic form (with
a subtle difference).

For Complex Fields,

S (d) =
∑
~k

{
(1 + Nk) ln(1 + Nk)− Nk lnNk

}
.

For Fermionic Fields :

S (d) = −2
∑
~k

{
(1− Nk) ln(1− Nk) + Nk lnNk

}
.

Same for either Dirac or Majorana.
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Results I: Complex Scalar Fields

Comoving Number density of gravitationally produced
particle-antiparticle pairs:

Npp =
1

π2

∫ ∞
0

k2Nk dk

Energy Density:

ρpp(η) =
1

π2 a4(η)

∫ ∞
0

k2Nk ωk(η) dk

Pressure:

Ppp(η) =
1

3π2 a4(η)

∫ ∞
0

k4

ωk(η)
Nk dk

Entropy density = Entanglement entropy :

Spp =
1

2π2

∫ ∞
0

k2
[
(1 + Nk) ln[1 + Nk ]− Nk lnNk

]
dk
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Results : Fermionic Fields

Comoving Number density:

Npp =
2

π2

∫ ∞
0

k2Nk dk ,

Energy Density:

ρpp(η) =
2

π2a4(η)

∫ ∞
0

k2Nk ωk(η) dk ,

Pressure:

Ppp(η) =
2

3π2a4(η)

∫ ∞
0

k2Nk
k2

ωk(η)
dk ,

Entropy density = Entanglement entropy for each spin/helicity of
Dirac or Majorana:

Spp = − 2

2π2

∫ ∞
0

k2
{

(1− Nk) ln(1− Nk) + Nk lnNk

}
dk ,
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Results

For Complex scalar fields, specific entropy :

Spp
Npp

� 1 ,

which is consistent with an Bose-Einstein condensate: a large
occupation of a few states −→ a low entropy state akin to a Bose
Einstein condensate but w/o SSB.

For the heavy fermionic DM, specific entropy :

Spp
Npp

' 1.8,

which is consistent with an emerging a (NR) near thermal spectrum.
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Connection to Observables

For Complex fields, m ≈ 10−5 eV yields correct DM abundance for
(CDM) with w ' 10−14 and λfs ' 70pc (cutoff in the power
spectrum of density perturbations).

Its comoving entropy is much smaller than that of the (CMB) today

Spp
Scmb

' 10−45 .

For Fermionic fields, m ≈ 108 GeV yields correct DM abundance for
(CDM).

The ratio of its comoving entropy to that of the (CMB) today is,

Spp
Scmb

' 10−15 .

For light bosonic (DM), the entropy is consistent with a Bose-Einstein
condensate, few modes of large occupation and low entropy, whereas
for fermions it is consistent with a (NR) thermal species and Pauli
blocking.
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Comments:

The entanglement entropy is NOT to be associated with entropy
(isocurvature) perturbations!!. It is a ubiquitous outcome of
gravitational production of back-to-back pairs and decoherence by
rapid dephasing. Q: what is its role if any in (DM) clustering? (TBD).

Familiar (kinetic) form of Tµν emerges after renormalization and
neglecting fast oscillations (decoherence) in the adiabatic regime.

The von Neumann-entanglement- entropy and the kinetic fluid form
of the energy momentum are all a consequence of decoherence of the
density matrix in the out basis. A (subtle) factor 2 and similarity
between Dirac and Majorana for the entropy is a consequence of
entangled pairs, not single particles.
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Questions

Are superhorizon modes insensitive to the post-inflation transition?
(this was the assumption, needs confirmation!).

The expectation value 〈0I |Tµν |0I 〉, after renormalization, and to
leading adiabatic order is of the fluid form, how to extract density
perturbations in the QFT approach?

Since the (DM) fields do not feature an VEV during inflation there is
no linear isocurvature perturbation, is there a non-linear one?, what
about renormalization of Tµν correlations?

If there are either self-interactions or interactions wih other d.o.f, does
the entanglement entropy become the thermal entropy, with which it
shares the same kinetic form? (in which case the distribution function
should thermalize?)

What is the role of entropy in clustering?? is it similar to the role of
coarse grained entropy in “violent relaxation”??
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Final conclusions

Gravitational production is a suitable mechanism for (DM)
production, the abundance only depends on the expansion history and
mass. The seeds were planted at inflation, and harvested at (MD).
Light bosonic fields inherit the infrared enhancement of the
inflationary era. Their distribution function describes a nearly Bose
Condensed state without (SSB), a mass m ' 10−5 eV yields (CDM),
and saturates the (DM) abundance with a λfs ' 70 pc.
Fermionic (DM) is produced with a nearly thermal (NR) distribution
function with a TH ' 10−36 eV (without an event horizon!),
saturating the (CDM) abundance for m ' 108GeV.
Particle-antiparticle interference in the “out” state leads to
decoherence of the density matrix by dephasing, the Von-Neuman
entropy is recognized as the entanglement entropy by tracing one
member of the pair. It features a kinetic fluid form. For bosons it is
in agreement with a low entropy Bose-condensed phase. For fermions
it displays Pauli blocking.
Many questions remain....(to be continued in season 2!)
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