
based on arXiv:2006.14570, 2010.13958

Insights into searches for the 
nanohertz gravitational-wave 

background with a Fisher analysis

Yacine Ali-Haïmoud (NYU)

with Tristan Smith and Chiara Mingarelli

King’s College London seminar, May 19, 2021



Painting by H.J. Detouche



radio     microwave       infrared             visible            UV                   X-ray                gamma-ray



The CMB success story

1965: Penzias & Wilson detect “excess emission” of 3 K, 
interpreted as the CMB by Dicke, Peebles, Roll & Wilkinson
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Fig 1 —Possible thermal history of the Universe. The figure shows the previous thermal history of the 
Universe assuming a homogeneous isotropic general-relativity cosmological model (no scalar field) with 
present matter density 2 X 10-29 gm/cm3 and present thermal radiation temperature 3.5° K The bottom 
horizontal scale may be considered simply the proper distance between two chosen fiducial co-moving 
galaxies (points) The top horizontal scale is the proper world time. The line marked “temperature” 
refers to the temperature of the thermal radiation Matter remains in thermal equilibrium with the radia- 
tion until the plasma recombines, at the time indicated Thereafter further expansion cools matter not 
gravitationally bound faster than the radiation. The mass density in radiation is pr. At present pr is 
substantially below the mass density in matter, pm, but, in the early Universe pr exceeded pm We have 
indicated the time when the Universe exhibited a transition from the characteristics of a radiation-filled 
model to those of a matter-filled model. 

Looking back in time, as the temperature approaches 1010 ° K the electrons become relativistic, and 
thermal electron-pair creation sharply increases the matter density At temperatures somewhat greater 
than 1010 ° K these electrons should be so abundant as to assure a thermal neutrino abundance and a 
thermal neutron-proton abundance ratio. A temperature of this order would be required also to decom- 
pose the nuclei from the previous cycle in an oscillating Universe. Notice that the nucleons are non- 
relativistic here. 

The thermal neutrons decay at the right-hand limit of the indicated region of helium formation. 
There is a left-hand limit on this region because at higher temperatures photodissociation removes the 
deuterium necessary to form helium The difficulty with this model is that most of the matter would end 
up in helium. 
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1990: the CMB has a perfect blackbody spectrum with 
distortions < 1% (improved to < 0.01%, Mather et al. 1999)

=> Stringent bounds on energy injection/extraction 
since a few months after the Big Bang

The CMB success story
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Fig. 2.—Preliminary spectrum of the cosmic microwave background from 
the FIRAS instrument at the north Galactic pole, compared to a blackbody. 
Boxes are measured points and show size of assumed 1% error band. The units 
for the vertical axis are 10“4 ergs s -1 cm-2 sr~1 cm. 

The error band in Figure 2 is a conservative estimate of the 
systematic errors in our current calibration algorithm, taken to 
be 1% of the peak intensity of the spectrum. Since the data 
show a good null both when the FIRAS is looking at the external 
calibrator and at the sky, one can determine from the interfero- 
grams alone that the spectrum of the sky is close to a blackbody, 
regardless of the details of the data reduction and calibration. 

IV. DISCUSSION 
The CMBR temperature reported here lies between the 

average of direct ground-based measurements, 2.655 ± 0.036 
K (see Smoot et al 1988 for a tabulation), and the precise 
measurement of 2.783 ± 0.025 K (1 o) at 0.8 cm"1 made from a 
balloon by Johnson and Wilkinson (1987). At the CN tran- 
sition frequency, the temperature measured by FIRAS is 
2.735 ± 0.06 K, compared to 2.70 ± 0.04 K from Meyer and 
Jura (1985), 2.796( +0.014, -0.039) K from Crane et al. (1989), 
and 2.77 ± 0.4 K from Kaiser and Wright (1990). The FIRAS 
data are not consistent with the departures from a blackbody 
spectrum reported by Matsumoto et al. (1988). 

Using the conservative 1% error bands, these new data set a 
3 a upper limit on the Comptonization y parameter of 0.001 
and on the chemical potential g of 0.009. This value of g is 
based on a fit to a pure Bose-Einstein spectrum with g inde- 
pendent of frequency. The hot smooth intergalactic medium 
(IGM) suggested to explain the cosmic X-ray background by 

Fig. 3.—Composite plot of recent measurements of the temperature of the 
sky (temperature of the cosmic background vs. wavelength). A = Sironi et al. 
(1987), B = Levin et al. (1987), C = Sironi and Bonelli (1986), D = De Amici et 
al. (1988), E = Mandolesi et al. (1986), F = Kogut et al. (1988), G = Johnson 
and Wilkinson (1987), H = Smoot et al. (1985), I = Smoot et al. (1987), 
J = Crâne et al. (1989), K = Meyer et al. (1989), Palazzi et al. (1990), 
L = Matsumoto et al. (1988). 

Field and Perrenod (1977), Guilbert and Fabian (1986), and 
recalculated by Taylor and Wright (1989) can be ruled out, 
since the predicted X-ray background scales as y2. The new 
limits on y would limit the X-ray background to only 1/36 of 
the observed value, even at a heating redshift as small as zc = 2. 
Many other sources of distortions of the CMBR spectrum 
(Bond, Carr, and Hogan 1986) are also severely constrained. 

A more accurate determination of the spectrum will be made 
after further sky observations, calibrations, and refinement of 
the calibration algorithm. The ultimate accuracy of any mea- 
sured spectrum distortions should be limited only by the 
optical design and stability of the external calibrator and by 
the models of radiation from interstellar dust. 

It is a pleasure to acknowledge the vital contributions of all 
those at GSFC who devoted their efforts to making this chal- 
lenging mission not only possible but enjoyable as well. Special 
thanks are due to Paul Richards and Patrick Thaddeus for 
their early encouragement to the lead author, to Robert 
Maichle and Michael Roberto for leading the engineering 
effort on the FIRAS instrument, and to Shirley Read, Robert 
Kümmerer, and Leonard Olson for their leadership in software 
development for the FIRAS. 
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FIG. 3. (a) The intensity of the sky as a function of wave
number as measured by COBRA. It is derived from an
analysis of all the interferograms recorded while the observa-
tion door was open. The smooth curve is a Planck function
which fits the data well. The curve oscillating along the abscis-
sa axis is the diff'erence between the experimental and Planck
curves. (b) The equivalent blackbody temperature as a func-
tion of frequency. Results of COBRA inferred from the data
in (a) are shown as circles. The scatter at the band ends was
caused by microphonic pickup. Other recent data have been
plotted on the same graph: s, Smoot (Ref. 18); JW, Johnson
and Wilkinson (Ref. 19); c, Crane et al. (Ref. 13); mrh,
Meyer, Roth, and Hawkins (Ref. 14); mat, Matsumoto et al.
(Ref. 16); m, Mandolesi et al. (Ref. 20). The dotted lines are
upper and lower limits found by FIRAS on COBE (Ref. 17).
Note added: Kaiser and Wright (Ref. 15) measure T=2.74
+ 0.05 from CN at k =2.64 mm.

diffuse galactic radiation, "being free of strong sources.
During flight the Sun and Moon were both beneath the
Earth's horizon, which itself was always more than 90
from the telescope axis. Laboratory measurements of
the telescopes beam pattern limit the response at this an-
gle to be less than 10
A composite graph showing a selection of some rele-

vant data during the flight is shown in Fig. 2. Average
interferograms for each of the three conditions of cali-
brator temperature have been produced for each detec-
tor, from which it is possible to make an absolute cali-
bration of the sensitivity, and evaluate the spectrum of

sky emission. The average of the two detector results is
shown in Fig. 3(a) as an intensity spectrum, and in Fig.
3(b) as an equivalent blackbody temperature as a func-
tion of frequency.
In Fig. 3(a), in addition to the measured data, a

Planck function has been drawn corresponding to a tem-
perature of 2.736 K, as well as the deviation between the
data and the calculated curve. The fit is quite good. The
quality of the fit may be judged from Fig. 3(b). In the
frequency region 3 ~ v ~ 16 cm ', where the signal-to-
noise ratio is high, the rms scatter of the temperature is
9.5 mK, about —,

' % of the mean. The standard deviation
of the mean temperature equals 2 mK. Outside of this
band the confidence of the temperature measurement is
not good, in part because the power available to abso-
lutely calibrate the instrument is very small, and in part
because the power is insensitive to T. Nevertheless, one
can say with considerable certainty that for 20 ~ v ~ 30
cm ' the temperature is less than 3 K, a new upper limit
in this region. Further analysis is underway to establish
precise confidence levels for this limit.
Various factors contribute to uncertainty in the mea-

sured value for the mean temperature: (1) internal cali-
brator nonuniformity, contributing an estimated 5 mK;
(2) uncertainties in offset corrections, 3 mK (the un-
corrected offsets are of the order of 30 mK); (3) possible
noncancellation of microphonics which developed during
liftoff, 2 mK (the microphonic disturbance is common to
the two detectors whereas optical signals are exactly out
of phase, so microphonics cancel in taking the difference
between interferograms measured by the two detectors);
(4) statistical fluctuations in the measured spectrum, 2
mK; (5) uncertainties due to heating of the sky telescope
by temporary coupling to the warm door during liftoff, 5
mK (this perturbation is shown to be at least this small
by comparing interferograms measured at various horn
temperatures). The linear sum of these uncertainties
equals 17 mK. It is expected that further analysis may
reduce the magnitude of uncertainties (I), (3), and (5).
The above conservative estimate of the uncertainty of

the temperature of the CBR is the smallest of any mea-
surement of this quantity yet reported and provides a
reference against which other measurements can be com-
pared in search for spectral distortions. Referring to Fig.
3(b), this measurement falls slightly below previous
single-frequency (CN) determinations in the same fre-
quency range, ' ' and particularly below the broadband
rocket measurements' which differ from our results by
about 4~, 12o., and 17o. in their three bands. The latter
were interpreted as due to large infrared distortions in
the CBR; these distortions are inconsistent with our re-
sults. In due course, the systematic errors of the COBE
experiment' are expected to be understood and the cor-
responding error bars reduced. At that time it will be
fruitful to make a detailed comparison between the re-
sults of these two precise experiments. The fact that the
mean temperatures agree to within 1 mK, much less
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Planck Collaboration: Cosmological parameters

Fig. 5. Constraints on parameters of the base-⇤CDM model from the separate Planck EE, T E, and TT high-` spectra combined
with low-` polarization (lowE), and, in the case of EE also with BAO (described in Sect. 5.1), compared to the joint result using
Planck TT,TE,EE+lowE. Parameters on the bottom axis are our sampled MCMC parameters with flat priors, and parameters on the
left axis are derived parameters (with H0 in km s�1Mpc�1). Contours contain 68 % and 95 % of the probability.

Table 1. Base-⇤CDM cosmological parameters from Planck TT,TE,EE+lowE+lensing. Results for the parameter best fits,
marginalized means and 68 % errors from our default analysis using the Plik likelihood are given in the first two numerical
columns. The CamSpec likelihood results give some idea of the remaining modelling uncertainty in the high-` polarization, though
parts of the small shifts are due to slightly di↵erent sky areas in polarization. The “Combined” column give the average of the
Plik and CamSpec results, assuming equal weight. The combined errors are from the equal-weighted probabilities, hence including
some uncertainty from the systematic di↵erence between them; however, the di↵erences between the high-` likelihoods are so small
that they have little e↵ect on the 1� errors. The errors do not include modelling uncertainties in the lensing and low-` likelihoods
or other modelling errors (such as temperature foregrounds) common to both high-` likelihoods. A total systematic uncertainty of
around 0.5� may be more realistic, and values should not be overinterpreted beyond this level. The best-fit values give a represen-
tative model that is an excellent fit to the baseline likelihood, though models nearby in the parameter space may have very similar
likelihoods. The first six parameters here are the ones on which we impose flat priors and use as sampling parameters; the remaining
parameters are derived from the first six. Note that ⌦m includes the contribution from one neutrino with a mass of 0.06 eV. The
quantity ✓MC is an approximation to the acoustic scale angle, while ✓⇤ is the full numerical result.

Parameter Plik best fit Plik [1] CamSpec [2] ([2] � [1])/�1 Combined

⌦bh2 . . . . . . . . . . . . . 0.022383 0.02237 ± 0.00015 0.02229 ± 0.00015 �0.5 0.02233 ± 0.00015
⌦ch2 . . . . . . . . . . . . . 0.12011 0.1200 ± 0.0012 0.1197 ± 0.0012 �0.3 0.1198 ± 0.0012
100✓MC . . . . . . . . . . . 1.040909 1.04092 ± 0.00031 1.04087 ± 0.00031 �0.2 1.04089 ± 0.00031
⌧ . . . . . . . . . . . . . . . . 0.0543 0.0544 ± 0.0073 0.0536+0.0069

�0.0077 �0.1 0.0540 ± 0.0074
ln(1010As) . . . . . . . . . 3.0448 3.044 ± 0.014 3.041 ± 0.015 �0.3 3.043 ± 0.014
ns . . . . . . . . . . . . . . . 0.96605 0.9649 ± 0.0042 0.9656 ± 0.0042 +0.2 0.9652 ± 0.0042

⌦mh2 . . . . . . . . . . . . 0.14314 0.1430 ± 0.0011 0.1426 ± 0.0011 �0.3 0.1428 ± 0.0011
H0 [ km s�1Mpc�1] . . . 67.32 67.36 ± 0.54 67.39 ± 0.54 +0.1 67.37 ± 0.54
⌦m . . . . . . . . . . . . . . 0.3158 0.3153 ± 0.0073 0.3142 ± 0.0074 �0.2 0.3147 ± 0.0074
Age [Gyr] . . . . . . . . . 13.7971 13.797 ± 0.023 13.805 ± 0.023 +0.4 13.801 ± 0.024
�8 . . . . . . . . . . . . . . . 0.8120 0.8111 ± 0.0060 0.8091 ± 0.0060 �0.3 0.8101 ± 0.0061
S 8 ⌘ �8(⌦m/0.3)0.5 . . 0.8331 0.832 ± 0.013 0.828 ± 0.013 �0.3 0.830 ± 0.013
zre . . . . . . . . . . . . . . . 7.68 7.67 ± 0.73 7.61 ± 0.75 �0.1 7.64 ± 0.74
100✓⇤ . . . . . . . . . . . . 1.041085 1.04110 ± 0.00031 1.04106 ± 0.00031 �0.1 1.04108 ± 0.00031
rdrag [Mpc] . . . . . . . . . 147.049 147.09 ± 0.26 147.26 ± 0.28 +0.6 147.18 ± 0.29
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We are in the early days of gravitational-wave 
astronomy … and cosmology!
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The gravitational-wave landscape
PTAs

1/(10 yr) ≈ 3 nHz



Sources of nHz GWs
★ Inspiraling supermassive black hole binaries (SMBHBs).

Joint radiation of many circular SMBHBs leads to a stochastic 
GWB with characteristic strain
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★``Primordial” GWs, either ``truly primordial”, or sourced 
at second-order by scalar perturbations (k ~ 1e6 Mpc-1). 

★“Exotica”, e.g. cosmic strings



First step: set constraints on one single number, 
characteristic GW strain amplitude, assuming an isotropic 
stochastic GWB with specific frequency dependence

Status of PTAs
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Table 3
Pulsars used in our GWB analysis (see NG11 for full details of pulsar
properties). The second column shows the weighted root-mean-square

epoch-averaged post-fit timing residuals (see NG9a for a definition of this
quantity).

PSR name RMS [µs] #epochs #TOAs baseline [yr]
J0023+0923 0.361 415 8,217 4.4
J0030+0451 0.691 268 5,699 10.9
J0340+4130 0.454 127 6,475 3.8
J0613-0200 0.422 324 11,566 10.8
J0645+5158 0.178 166 6,370 4.5
J1012+5307 1.07 493 16,782 11.4
J1024-0719 0.323 194 8,233 6.2
J1455-3330 0.672 277 7,526 11.4
J1600-3053 0.23 275 12,433 8.1
J1614-2230 0.199 241 11,173 7.2
J1640+2224 0.426 323 5,982 11.1
J1643-1224 3.31 298 11,528 11.2
J1713+0747 0.108 789 27,571 10.9
J1738+0333 0.52 208 4,881 6.1
J1741+1351 0.128 134 3,047 6.4
J1744-1134 0.842 322 11,550 11.4
J1747-4036 3.59 113 6,065 3.8
J1853+1303 0.239 107 2,514 4.5
B1855+09 0.809 296 5,634 11.0
J1903+0327 3.65 112 3,326 6.1
J1909-3744 0.148 451 17,373 11.2
J1910+1256 0.544 130 3,563 6.8
J1918-0642 0.322 364 12,505 11.2
J1923+2515 0.229 87 1,954 4.3
B1937+21 1.57 460 14,217 11.3
J1944+0907 0.352 104 2,850 4.4
B1953+29 0.377 88 2,331 4.4
J2010-1323 0.257 222 10,844 6.2
J2017+0603 0.11 102 2,359 3.8
J2043+1711 0.12 197 3,262 4.5
J2145-0750 0.968 258 10,938 11.3
J2214+3000 1.33 176 4,569 4.2
J2302+4442 1.07 138 6,549 3.8
J2317+1439 0.271 395 5,958 11.0

limit of 1.45(2) ⇥ 10-15. This value is the same, within sam-
pling error, no matter which ephemeris we take as a starting
point for BAYESEPHEM, demonstrating that we have success-
fully “bridged” the individual ephemerides.

Comparing the columns of Table 4 shows how the upper
limits vary under different assumptions on the presence of
spatially correlated common processes in the data. The limits
are slightly more stringent if we model the GWB as a spatially
uncorrelated common process (model 2A in the second col-
umn), indicating that Hellings–Downs correlations help the
likelihood isolate a GW-like signal (whether real, or due to
random noise fluctuations). Introducing additional spatially
correlated processes (with ephemeris-error–like dipolar corre-
lations, clock-error–like monopolar correlations, or both, cor-
responding to models 3B, 3D, and 3C) reduces upper lim-
its for the individual ephemerides but not for BAYESEPHEM,
suggesting that the same realization of inter-pulsar signal cor-
relations can be picked up by different ORFs, and that dipole
and monopole processes can absorb some, but not all, of the
systematic bias caused by ephemeris error.

In Figure 2 we show the 95% upper limit for the amplitude
of an uncorrelated common process (model 2A) as a function
of �. In the absence of red noise, and if the lowest sampling
frequency (1/T ) dominated our sensitivity, we would expect
these constraints to scale as / T -�/2, where T is the longest
timing baseline across the entire PTA. We find the actual scal-
ing to be closer to / T -0.4� , indicating that red noise is present
and that more than one frequency component contributes to

h
c
(f

=
1y

r�
1
)

95
%

u
p
p
er

li
m

it

Figure 2. GWB-amplitude 95% upper limit for an uncorrelated common
process (model 2A) as a function of spectral index � (see Eq. (5)), for the
JPL ephemerides and for BAYESEPHEM. The dotted curve shows a power-
law fit to the BAYESEPHEM curve, which is consistent with a similar fit in
NG9b.

Figure 3. Top panel: GWB-amplitude 95% upper limits for an uncorrelated
common process with � = 13/3 power law (straight black line) or with in-
dependently determined free-spectrum components (jagged black line). The
thickness of the lines spans the spread of results over different ephemerides.
The dash-dotted line shows the expected sensitivity scaling behavior for
white-noise. The colored dashed lines and bands show median and one-
sigma ranges for the GWB amplitudes predicted in MOP14 (green), Simon
& Burke-Spolaor (2016) (orange), and S16 (blue). Bottom panel: As in the
top panel, except showing the results in terms of the stochastic GWB energy
density (per logarithmic frequency bin)in the Universe as a fraction of clo-
sure density, ⌦GWB( f )h2. The relationship between hc( f ) and ⌦GWB( f )h2 is
given in Equation 10.

the likelihood.
In the top panel of Figure 3 we show 95% upper lim-

its for free-spectrum amplitudes (jagged black line), which
are diagnostic of the sensitivity of our dataset to individual
monochromatic GW signals. In the same plot we show also

α = 2/3

α
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PTAs are still in the 

pre-Penzias & Wilson era
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Figure 6. Bayesian amplitude posteriors in a model that
includes a common-spectrum process, and an o↵-diagonal
HD-correlated process where all auto-correlation terms are
set to zero (see main text of Sec. 4.3). The posteriors shown
here are marginalized with respect to each other. The infer-
ence run includes BayesEphem.

augmented with a second HD-correlated process with
auto-correlation coe�cients set to zero. In other words,
we decouple the amplitudes of the auto- and cross-
correlation terms. The uncorrelated common-spectrum
process regularizes the overall covariance matrix, which
would not otherwise be positive definite with this new
“o↵ diagonal only” GWB. Figure 6 shows marginalized
amplitude posteriors for the diagonal and o↵-diagonal
processes, which appear consistent. It is however ev-
ident that cross correlations carry much weaker infor-
mation: as a matter of fact, the log10 Bayes factor in
favor of the additional process (computed à la Savage–
Dickey, see Dickey 1971) is 0.10±0.01 with fixed DE438
and �0.03±0.01 under BayesEphem. These factors are
smaller than the HD-vs.-uncorrelated values of Table 2,
arguably because the o↵-diagonal portion of the model is
given the additional burden of selecting the appropriate
amplitude.

Second, we performed Bayesian inference on a
common-spectrum model that includes a parametrized
ORF: specifically, inter-pulsar correlations are obtained
by the spline interpolation of seven nodes spread across
angular separations; node values are estimated as inde-
pendent parameters with uniform priors in [�1, 1] (Tay-
lor et al. 2013). Figure 7 shows the marginalized posteri-
ors of the angular correlations, and bears direct compar-
ison with Figure 5. The posteriors, although not very
informative, are consistent with the HD ORF, which is
over-plotted in the figure. However, they are inconsis-
tent with the monopolar ORF, also overplotted in the
figure. This behavior is similar to the evidence reported
in Table 2.

Figure 7. Bayesian reconstruction of interpulsar spatial cor-
relations, parameterized as a seven-node spline. Violin plots
show marginalized posteriors for node correlations, with me-
dians, 5% and 95% percentiles, and extreme values. The
dashed blue line shows the HD ORF expected for a GWB,
while the dashed horizontal orange line shows the expected
interpulsar correlation signature for a monopole systematic
error, (e.g. drifts in clock standards).

5. STATISTICAL SIGNIFICANCE

As described above, the 12.5-year data set o↵ers
strong evidence for a spatially uncorrelated common-
spectrum process across pulsars in the data set, but it
favors only slightly the interpretation of this process as
a GWB by way of HD inter-pulsar correlations. In this
section we test the robustness of the first statement, by
examining the contribution of each pulsar to the overall
Bayes factor; and we characterize the statistical signif-
icance of the second, by building virtual null distribu-
tions for the HD detection statistics. We expect that
studies of both kinds will be important to establishing
confidence in future detection claims.

5.1. Characterizing the evidence for a
common-spectrum process across the PTA

Under a model that includes a noise-like process of
common spectrum across all pulsars without inter-pulsar
correlations, and in the absence of other physical e↵ects
linking observations across pulsars (such as ephemeris
corrections), the PTA likelihood factorizes into individ-
ual pulsar terms:

p({dj}N |{~✓j}N , ACP) =
NY

j=1

p(dj |~✓j , ACP), (4)

where dj and ~✓j denote the data set and the intrinsic
noise parameters for each pulsar j, and where ACP de-
notes the amplitude of the common-spectrum process.

Equation (4) suggests a trivially parallel approach to
estimating the ACP posterior: we performed indepen-

NANOGrav 
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Table 3
Pulsars used in our GWB analysis (see NG11 for full details of pulsar
properties). The second column shows the weighted root-mean-square

epoch-averaged post-fit timing residuals (see NG9a for a definition of this
quantity).

PSR name RMS [µs] #epochs #TOAs baseline [yr]
J0023+0923 0.361 415 8,217 4.4
J0030+0451 0.691 268 5,699 10.9
J0340+4130 0.454 127 6,475 3.8
J0613-0200 0.422 324 11,566 10.8
J0645+5158 0.178 166 6,370 4.5
J1012+5307 1.07 493 16,782 11.4
J1024-0719 0.323 194 8,233 6.2
J1455-3330 0.672 277 7,526 11.4
J1600-3053 0.23 275 12,433 8.1
J1614-2230 0.199 241 11,173 7.2
J1640+2224 0.426 323 5,982 11.1
J1643-1224 3.31 298 11,528 11.2
J1713+0747 0.108 789 27,571 10.9
J1738+0333 0.52 208 4,881 6.1
J1741+1351 0.128 134 3,047 6.4
J1744-1134 0.842 322 11,550 11.4
J1747-4036 3.59 113 6,065 3.8
J1853+1303 0.239 107 2,514 4.5
B1855+09 0.809 296 5,634 11.0
J1903+0327 3.65 112 3,326 6.1
J1909-3744 0.148 451 17,373 11.2
J1910+1256 0.544 130 3,563 6.8
J1918-0642 0.322 364 12,505 11.2
J1923+2515 0.229 87 1,954 4.3
B1937+21 1.57 460 14,217 11.3
J1944+0907 0.352 104 2,850 4.4
B1953+29 0.377 88 2,331 4.4
J2010-1323 0.257 222 10,844 6.2
J2017+0603 0.11 102 2,359 3.8
J2043+1711 0.12 197 3,262 4.5
J2145-0750 0.968 258 10,938 11.3
J2214+3000 1.33 176 4,569 4.2
J2302+4442 1.07 138 6,549 3.8
J2317+1439 0.271 395 5,958 11.0

limit of 1.45(2) ⇥ 10-15. This value is the same, within sam-
pling error, no matter which ephemeris we take as a starting
point for BAYESEPHEM, demonstrating that we have success-
fully “bridged” the individual ephemerides.

Comparing the columns of Table 4 shows how the upper
limits vary under different assumptions on the presence of
spatially correlated common processes in the data. The limits
are slightly more stringent if we model the GWB as a spatially
uncorrelated common process (model 2A in the second col-
umn), indicating that Hellings–Downs correlations help the
likelihood isolate a GW-like signal (whether real, or due to
random noise fluctuations). Introducing additional spatially
correlated processes (with ephemeris-error–like dipolar corre-
lations, clock-error–like monopolar correlations, or both, cor-
responding to models 3B, 3D, and 3C) reduces upper lim-
its for the individual ephemerides but not for BAYESEPHEM,
suggesting that the same realization of inter-pulsar signal cor-
relations can be picked up by different ORFs, and that dipole
and monopole processes can absorb some, but not all, of the
systematic bias caused by ephemeris error.

In Figure 2 we show the 95% upper limit for the amplitude
of an uncorrelated common process (model 2A) as a function
of �. In the absence of red noise, and if the lowest sampling
frequency (1/T ) dominated our sensitivity, we would expect
these constraints to scale as / T -�/2, where T is the longest
timing baseline across the entire PTA. We find the actual scal-
ing to be closer to / T -0.4� , indicating that red noise is present
and that more than one frequency component contributes to
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Figure 2. GWB-amplitude 95% upper limit for an uncorrelated common
process (model 2A) as a function of spectral index � (see Eq. (5)), for the
JPL ephemerides and for BAYESEPHEM. The dotted curve shows a power-
law fit to the BAYESEPHEM curve, which is consistent with a similar fit in
NG9b.
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Figure 3. Top panel: GWB-amplitude 95% upper limits for an uncorrelated
common process with � = 13/3 power law (straight black line) or with in-
dependently determined free-spectrum components (jagged black line). The
thickness of the lines spans the spread of results over different ephemerides.
The dash-dotted line shows the expected sensitivity scaling behavior for
white-noise. The colored dashed lines and bands show median and one-
sigma ranges for the GWB amplitudes predicted in MOP14 (green), Simon
& Burke-Spolaor (2016) (orange), and S16 (blue). Bottom panel: As in the
top panel, except showing the results in terms of the stochastic GWB energy
density (per logarithmic frequency bin)in the Universe as a fraction of clo-
sure density, ⌦GWB( f )h2. The relationship between hc( f ) and ⌦GWB( f )h2 is
given in Equation 10.

the likelihood.
In the top panel of Figure 3 we show 95% upper lim-

its for free-spectrum amplitudes (jagged black line), which
are diagnostic of the sensitivity of our dataset to individual
monochromatic GW signals. In the same plot we show also
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Table 3
Pulsars used in our GWB analysis (see NG11 for full details of pulsar
properties). The second column shows the weighted root-mean-square

epoch-averaged post-fit timing residuals (see NG9a for a definition of this
quantity).

PSR name RMS [µs] #epochs #TOAs baseline [yr]
J0023+0923 0.361 415 8,217 4.4
J0030+0451 0.691 268 5,699 10.9
J0340+4130 0.454 127 6,475 3.8
J0613-0200 0.422 324 11,566 10.8
J0645+5158 0.178 166 6,370 4.5
J1012+5307 1.07 493 16,782 11.4
J1024-0719 0.323 194 8,233 6.2
J1455-3330 0.672 277 7,526 11.4
J1600-3053 0.23 275 12,433 8.1
J1614-2230 0.199 241 11,173 7.2
J1640+2224 0.426 323 5,982 11.1
J1643-1224 3.31 298 11,528 11.2
J1713+0747 0.108 789 27,571 10.9
J1738+0333 0.52 208 4,881 6.1
J1741+1351 0.128 134 3,047 6.4
J1744-1134 0.842 322 11,550 11.4
J1747-4036 3.59 113 6,065 3.8
J1853+1303 0.239 107 2,514 4.5
B1855+09 0.809 296 5,634 11.0
J1903+0327 3.65 112 3,326 6.1
J1909-3744 0.148 451 17,373 11.2
J1910+1256 0.544 130 3,563 6.8
J1918-0642 0.322 364 12,505 11.2
J1923+2515 0.229 87 1,954 4.3
B1937+21 1.57 460 14,217 11.3
J1944+0907 0.352 104 2,850 4.4
B1953+29 0.377 88 2,331 4.4
J2010-1323 0.257 222 10,844 6.2
J2017+0603 0.11 102 2,359 3.8
J2043+1711 0.12 197 3,262 4.5
J2145-0750 0.968 258 10,938 11.3
J2214+3000 1.33 176 4,569 4.2
J2302+4442 1.07 138 6,549 3.8
J2317+1439 0.271 395 5,958 11.0

limit of 1.45(2) ⇥ 10-15. This value is the same, within sam-
pling error, no matter which ephemeris we take as a starting
point for BAYESEPHEM, demonstrating that we have success-
fully “bridged” the individual ephemerides.

Comparing the columns of Table 4 shows how the upper
limits vary under different assumptions on the presence of
spatially correlated common processes in the data. The limits
are slightly more stringent if we model the GWB as a spatially
uncorrelated common process (model 2A in the second col-
umn), indicating that Hellings–Downs correlations help the
likelihood isolate a GW-like signal (whether real, or due to
random noise fluctuations). Introducing additional spatially
correlated processes (with ephemeris-error–like dipolar corre-
lations, clock-error–like monopolar correlations, or both, cor-
responding to models 3B, 3D, and 3C) reduces upper lim-
its for the individual ephemerides but not for BAYESEPHEM,
suggesting that the same realization of inter-pulsar signal cor-
relations can be picked up by different ORFs, and that dipole
and monopole processes can absorb some, but not all, of the
systematic bias caused by ephemeris error.

In Figure 2 we show the 95% upper limit for the amplitude
of an uncorrelated common process (model 2A) as a function
of �. In the absence of red noise, and if the lowest sampling
frequency (1/T ) dominated our sensitivity, we would expect
these constraints to scale as / T -�/2, where T is the longest
timing baseline across the entire PTA. We find the actual scal-
ing to be closer to / T -0.4� , indicating that red noise is present
and that more than one frequency component contributes to
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Figure 2. GWB-amplitude 95% upper limit for an uncorrelated common
process (model 2A) as a function of spectral index � (see Eq. (5)), for the
JPL ephemerides and for BAYESEPHEM. The dotted curve shows a power-
law fit to the BAYESEPHEM curve, which is consistent with a similar fit in
NG9b.
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Figure 3. Top panel: GWB-amplitude 95% upper limits for an uncorrelated
common process with � = 13/3 power law (straight black line) or with in-
dependently determined free-spectrum components (jagged black line). The
thickness of the lines spans the spread of results over different ephemerides.
The dash-dotted line shows the expected sensitivity scaling behavior for
white-noise. The colored dashed lines and bands show median and one-
sigma ranges for the GWB amplitudes predicted in MOP14 (green), Simon
& Burke-Spolaor (2016) (orange), and S16 (blue). Bottom panel: As in the
top panel, except showing the results in terms of the stochastic GWB energy
density (per logarithmic frequency bin)in the Universe as a fraction of clo-
sure density, ⌦GWB( f )h2. The relationship between hc( f ) and ⌦GWB( f )h2 is
given in Equation 10.

the likelihood.
In the top panel of Figure 3 we show 95% upper lim-

its for free-spectrum amplitudes (jagged black line), which
are diagnostic of the sensitivity of our dataset to individual
monochromatic GW signals. In the same plot we show also

• Frequency spectrum of the GWB ?

NANOGrav collaboration 
(11-yr analysis)



Looking ahead
• Anisotropies in GWB intensity?

Anisotropies are expected from the Poisson statistics of 
finite number of SMBHBs (Mingarelli et al. 2013)



• Polarization of the stochastic GWB?

Looking ahead



Looking ahead

=> What physics might we learn if and when 
we measure more properties of the GWB?

=> What can PTAs measure in the 
first place, and how well? 



Why a Fisher formalism?

•A detection of the gravitational-wave background can 
only be achieved with pulsar cross-correlations

•NANOGrav 12.5 year uses 45 pulsars, i.e. 990 pairs

•SKA promises hundreds of new millisecond pulsars, 
i.e. tens of thousands of pairs

➡ We need simple — but robust — tools to be able to 
make forecasts without running MCMCs, and to 
guide and optimize full-blown data analyses

•Fisher formalism: ``theorist’s reduction of the data 
analysis process”.



Analogies and differences between 
EMWs       and          GWs

• Astrophysical sources always 
made of large numbers of 
incoherent microscopic emitters 
=> Astrophysical EMWs 

are always stochastic 
(even “point sources”)

• Can detect deterministic GWs 
from single “microscopic” 
sources, e.g. a single binary.

• Superposition of many sources 
can lead to a stochastic GWB.

=> focus of this work
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⌦̂ihij(f, ⌦̂) = 0
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hij symmetric, trace-free

direction of 
propagation

=> 2 independent components => 2 independent components



Analogies and differences between 
EMWs       and          GWs
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⌘

+ V (f, ⌦̂)✏ijk⌦̂k

+ Lij(f, ⌦̂)

symmetric and trace-free
2 independent linear 

polarizations
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= I(f, ⌦̂)Iabcd(⌦̂)
+ V(f, ⌦̂)Vabcd(⌦̂)

+ Labcd(f, ⌦̂)

symmetric and trace-free 
in all pairs

2 independent linear 
polarizations



Pulsar timing basics
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time

Radio 
intensity

Earth

smooth ``timing model” 
(accounts for pulsar spin down, 
possible binary companion…)

Pulse #

Pulse time 
of arrival
(TOA)



t

Time residual Rp(t) = TOA - timing model(t) For each pulsar p:
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Figure 14. Summary of timing residuals and DM variations for PSR J1012+5307. Colored points indicate the receiver for
the observation: 820 MHz (Green) and 1.4 GHz (Dark blue). In the top panel, individual points are semi-transparent; darker
regions arise from the overlap of many points.

Figure 15. Summary of timing residuals and DM variations for PSR J1024�0719. Colored points indicate the receiver for
the observation: 820 MHz (Green) and 1.4 GHz (Dark blue). In the top panel, individual points are semi-transparent; darker
regions arise from the overlap of many points.
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Figure 14. Summary of timing residuals and DM variations for PSR J1012+5307. Colored points indicate the receiver for
the observation: 820 MHz (Green) and 1.4 GHz (Dark blue). In the top panel, individual points are semi-transparent; darker
regions arise from the overlap of many points.

Figure 15. Summary of timing residuals and DM variations for PSR J1024�0719. Colored points indicate the receiver for
the observation: 820 MHz (Green) and 1.4 GHz (Dark blue). In the top panel, individual points are semi-transparent; darker
regions arise from the overlap of many points.
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Rp(t) ! Rp(f)Fourier transform



Main sources of timing residuals

• Intrinsic pulsar noise.  

uncorrelated between different pulsars

• GW-induced timing residuals

5

C. Concise derivation of the timing residuals from
GWs

A common derivation of the time-residual induced by
GWs consists of deriving expressions for a null geodesic
in the presence of gravitational plane-waves using Killing
vectors [2, 30, 31]. Here we provide a new and concise
derivation in the spirit of the first calculation by Ref. [1].
Our derivation has the advantage of not being limited
to a plane wave, but directly applies to a generic super-
position of waves, with no special symmetries hence no
Killing vector fields. Consider null geodesics in the met-
ric

ds
2 = �dt

2 + (�ab + hab)dx
a
dx

b
, (27)

where the GW strain hab(t, ~x) is symmetric, trace-free
and transverse (@a

hab = 0). Specifically, consider light
rays originating at a pulsar p (event P ) and received on
Earth (event E). We define d`

2 = �abdx
a
dx

b. The null
geodesic condition implies that

dt =
�
d`

2 + habdx
a
dx

b
�1/2

= d`

✓
1 + hab

dx
a

d`

dx
b

d`

◆1/2

= d`

✓
1 +

1

2
hab

dx
a

d`

dx
b

d`

◆
+ O(h2), (28)

where we have expanded to linear order in hab. At this
order, we only need to compute dx

a
/d` along unper-

turbed geodesics. For unperturbed geodesics traveling
along the direction �p̂ (so that the unit vector p̂ points
from Earth to the pulsar), we have dx

a
/d` = �p̂

a. Inte-
grating Eq. (28), we therefore get

tE � tP = `E � `P +
1

2
p̂
a
p̂
b

Z tE

tP

dt hab(t, ~x(t)), (29)

where we have substituted d` by dt in the integral, as
they are equal to zero-th order in hab, and ~x(t) is the
spatial position along the geodesic. Now, in this gauge
the pulsar and Earth (seen as test particles) stay at the
same spatial coordinates [32]. This implies (i) `E � `P

takes the same value with and without GWs and (ii)
the proper time measured at Earth is also the coordinate
time t. Therefore the last term in Eq. (29) is precisely
the sought-after GW-induced timing residual R

GW
p . As-

suming the Earth is at the origin of spatial coordinates,
we have

R
GW
p (t) =

1

2
p̂
a
p̂
b

Z t

t�Dp

dt
0
hab(t

0
, (t � t

0)p̂), (30)

where Dp is the distance (or time) between Earth and
the pulsar.

It is useful to recast this result in terms of the Fourier
transform of the strain. Inserting Eq. (1) into the time-

residual (30), we obtain

R
GW
p (t) =

1

2
p̂
a
p̂
b

Z
df

Z
d
2⌦̂ hab(f, ⌦̂)

⇥
Z t

t�Dp

dt
0 e2⇡if(t0�p̂·⌦̂(t�t0))

⌘
Z

df e2⇡ift
R

GW
p (f). (31)

Upon performing the time integral, we find the Fourier
transform of the GW-induced time residual R

GW
p (f):

R
GW
p (f) =

p̂
a
p̂
b

4⇡if

Z
d
2⌦̂

hab(f, ⌦̂)

(1 + ⌦̂ · p̂)

⇥
⇣
1 � e�2⇡ifDp(1+p̂·⌦̂)

⌘
. (32)

The first term in the parenthesis corresponds to the
“Earth term” and the second term to the “pulsar term”.

D. Time-residual correlations

We define the (one-sided) cross-power spectrum
RGW

pq (f) of the GW-induced time residuals at di↵erent
pulsars p, q as follows:

hRGW
p (f)R⇤GW

q (f 0)i =
�D(f 0 � f)

2
RGW

pq (f). (33)

Using Eq. (2), we find

RGW
pq (f) =

1

(4⇡f)2

Z
d
2⌦̂

4⇡

p̂
a
p̂
b
q̂
c
q̂
dPabcd(f, ⌦̂)

(1 + p̂ · ⌦̂)(1 + q̂ · ⌦̂)

⇥
⇣
1 � e�2⇡ifDp(1+p̂·⌦̂)

⌘⇣
1 � e2⇡ifDq(1+q̂·⌦̂)

⌘
.(34)

We can think of the pulsar-term contributions as taking
the harmonic transform of the integrand at multipole ` ⇠
2⇡fD (note that the numerator vanishes as ⌦̂ ! �p̂ and
⌦̂ ! �q̂ so the integrand is well behaved there). In
practice, we have D ⇠ kpc ⇠ 3 ⇥ 103 lightyears and
f ⇠1/yr, thus

2⇡fD ⇡ 2 ⇥ 104 D

kpc

f

yr�1
. (35)

Therefore, as long as angular fluctuations of the SGWB
on a scale ` & 104 are negligible, we may safely approxi-
mate the terms in parenthesis by
⇣
1 � e

�2⇡ifDp(1+p̂·⌦̂)
⌘⇣

1 � e
2⇡ifDq(1+q̂·⌦̂)

⌘
! (1 + �pq),

where the Kronecker delta accounts for the factor of two
if the two pulsars are identical, i.e. have the same location
on the sky and are at the same distance. See Ref. [33]
for an explicit proof of the validity of this approximation
for an isotropic SGWB, and [34] for an anisotropic one.

It will be useful in what follows to introduce some com-
pact notation to denote integrals over the sky. For any
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⌦̂ = direction of 
GW propagation
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Correlation of GW-induced residuals
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hRGW
p (f)R⇤GW

q (f)i = RGW
pq (f)
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RGW
pq (f) =

1

(4⇡f)2

Z
d2⌦̂

4⇡
�p̂q̂(⌦̂)I(f, ⌦̂)
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pairwise timing response function
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For an isotropic GWB: 
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Constructing the Fisher “matrix”
• Construct quadratic estimators for timing residual cross-

power spectra, for each pair  (p, q), p ≠ q
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[$ Ĉ` =
1

2`+ 1

X

m

|a`m|2 for CMB]

•Approximate distribution of estimators as Gaussian. 
Compute covariance in weak-signal limit.

 Translates to a Gaussian likelihood for GWB intensity, 
given timing residual data.



Effective noise strain for each pulsar:
<latexit sha1_base64="1ZvYFXswIUPcQ505jbcOFdWHDo4="></latexit>

h2
c,p(f) ⌘

4

3

(4⇡f)2�2
p(f)

Tp(f)

Constructing the Fisher “matrix”

Loss of information at low 
frequencies when fitting a 

smooth timing model 
(Blandford, Narayan & Romani 1984)
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FIG. 2. Characteristic noise strains for 6 of the EPTA pul-
sars, produced using publicly available EPTA data [51] and
Hasasia [34, 35], see main text for details. The spikes at
1/yr and 2/yr arise from degeneracies with the Earth’s or-
bital motion when fitting the pulsar position and distance.
For J1713-0747, the spike at f ⇡ 5.4/yr is at the 67.8-day
period of this binary system.

samples. We have confirmed that our noise parameters
match well with the noise analysis described in [53].

After we have estimated the noise parameters for each
pulsar we use Hasasia [34, 35] to compute the total noise
power spectrum �

2
p(f), transmission function Tp(f), and

characteristic noise strain hc,p(f), for each one of the
EPTA pulsars. As an illustration, we show the charac-
teristic noise strains of 6 of the EPTA pulsars in Fig. 2.
We will use these specific 6 pulsars when comparing of
our results with those of TMG15 in Section VII.

B. Best pulsar pairs for isotropic GWB searches

In what follows we determine which pulsar pairs con-
tribute most to the total SNR2 from a cross-correlation
analysis. We will see that only a small number of pul-
sar pairs are needed to get most of the SNR2. A similar
analysis was performed in Ref. [54] for the Parkes PTA;
here we consider the EPTA and provide a much simpler,
analytic calculation.

As can be seen from Eq. (33), for a general GWB, each
pair I contributes FI(�I · A)2 to the SNR2. The rela-
tive ranking of pulsar pairs thus depends on the angular
dependence of the GWB, and there is no universal rank-
ing that holds for an arbitrary GWB. Since we expect
the GWB to be predominantly isotropic, it is sensible to
rank pulsar pairs under this assumption.

For an isotropic GWB A(⌦̂) = A
2
h, from Eq. (33) we

see that the SNR2 is given by

SNR2 = A
4
h

X

I

FI H
2
I . (41)

First, to check the soundness of our analysis, we esti-
mate the 95% sensitivity to a monopole, A

95%
h , such that

SNR[A95%
h ] = 2. Using Eq. (41), we find

A
95%
h =

p

2

 
X

I

FI H
2
I

!�1/4

. (42)

Using the characteristic noise strains we computed for the
EPTA dataset, we find A

95%
h ⇡ 2.5⇥10�15. If we restrict

ourselves to the 6 EPTA pulsars used in Refs. [20, 32], we
find instead A

95%
h ⇡ 3.4 ⇥ 10�15. This lies between the

95% upper-limit values found in these references, of 3.0⇥

10�15 [20] and 3.9 ⇥ 10�15 [32]. This gives us confidence
that our characteristic noise strains provide a realistic
description of the data.

From Eq. (41), we see that for an isotropic GWB, each
pair I = (p, q) contributes A

4
hFIH

2
I to the SNR2. We

have ranked the 861 pulsar pairs of the full EPTA dataset
in terms of their contributions to the SNR2. In Fig. 3
we show the normalized cumulative contributions of the
best 44 pulsar pairs, which contributed 90% of the SNR2.
While this is three times as many pairs as what can be
constructed with the 6 pulsars used in Refs. [20, 32], these
44 pairs represent 5% of the total number of pairs in the
full dataset, and should still constitute a manageable col-
lection of data. Moreover, we find that the 6 pulsars used
in Refs. [20, 32] only contribute 26% of the total SNR2 for
an isotropic GWB, while the best 15 pairs would amount
to 68% of the SNR2, as can be seen in Fig. 3.

This result is of significant importance to speed up
future analyses of real data. It is well known that ac-
counting for all the correlations between pulsar pairs in a
full Bayesian analysis of timing residuals is computation-
ally challenging. Here we see that it su�ces to include
a small, manageable number of pulsar pairs to recover
most of the SNR2. Our simple Fisher formalism allows
us to e�ciently determine which pairs to use for any given
dataset. This can be done not only for an isotropic GWB,
but also for any assumed angular dependence, if desired.

IV. SENSITIVITY TO GWB ANISOTROPIES
USING STANDARD BASES

A. General approach

Suppose that we model the GWB amplitude to be a
linear combination of known maps Mn:

A =
X

n

AnMn, (43)

where An are scalar amplitudes. The maps Mn could
be, for instance, spherical harmonics, or Dirac functions
centered at specific directions in the sky. They can be,
in general, any set of linearly independent maps, and
need not even be orthogonal nor normalized. We can
always define the dual maps M⇤

n (not to be confused with
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hc,p(f)

Computed with Hasasia (Hazboun, 
Romano & Smith 2019)

Only requires analyzing 
single pulsars 

(no cross correlations 
involved)



Constructing the Fisher “matrix”
Special case: factorized frequency and angular dependence.
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properties
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A. Analytic expression for Npsr ! 1

Suppose all the pulsars have the same noise �p = �, are
observed for the same time T , and have the same trans-
mission function T (f). In that limit the Fisher matrix
F is given by

F(⌦̂, ⌦̂0) = C F (⌦̂, ⌦̂0), (67)
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In the limit that Npsr ! 1, assuming the pulsars are
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By symmetry, this is a function of � ⌘ ⌦̂ · ⌦̂0 only, which
we compute explicitly in Appendix C. We derive the fol-
lowing analytic expression:
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We show F1(�) as a solid line in Fig. 2. For comparison,
we also show the reduced Fisher matrix F (⌦̂, ⌦̂0) for a
finite number of identical, quasi-isotropically distributed
pulsars6, for 1000 randomly selected pairs of sky direc-
tions (⌦̂, ⌦̂0). We see how F (⌦̂, ⌦̂0) indeed converges to
the function F1 as Npsr increases. Only in the limit
Npsr ! 1 is the Fisher matrix a function of the angle

\(⌦̂, ⌦̂0) only; otherwise, it depends on both ⌦̂ and ⌦̂0,
which translates into a scatter of the values of F (⌦̂, ⌦̂0)
when plotted as a function of \(⌦̂, ⌦̂0).

The dense-PTA Fisher matrix can be decomposed into
Legendre polynomials:

F1(⌦̂ · ⌦̂0) =
X

`

(2` + 1)F` P`(⌦̂ · ⌦̂0)

= 4⇡

X

`,m

F` Y`m(⌦̂)Y`m(⌦̂0), (72)

where the Y`m are the real spherical harmonics.
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FIG. 2. Values of the rescaled Fisher matrix for a finite num-
ber of quasi-isotropically distributed identical pulsars (10, 30
and 90, respectively), for 1000 randomly selected pairs of
SGWB directions in the sky (⌦̂, ⌦̂0), as a function of the an-
gle between them. The solid black line shows our analytic re-
sult, holding for an infinite number of isotropically distributed
identical pulsars.

We show the Legendre coe�cients F` in Fig. 3. Inter-
estingly, the amplitude of Legendre coe�cients decreases
monotonically with `, except for F1 ⇡ F0/7, which is
significantly lower than F2, and comparable to F3.

B. Minimum detectable dipolar anisotropy

Suppose the GWB takes the form

I = I0

0

@1 +
X

`�1,m

g`mY`m

1

A . (73)
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A. Analytic expression for Npsr ! 1

Suppose all the pulsars have the same noise �p = �, are
observed for the same time T , and have the same trans-
mission function T (f). In that limit the Fisher matrix
F is given by

F(⌦̂, ⌦̂0) = C F (⌦̂, ⌦̂0), (67)
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In the limit that Npsr ! 1, assuming the pulsars are
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By symmetry, this is a function of � ⌘ ⌦̂ · ⌦̂0 only, which
we compute explicitly in Appendix C. We derive the fol-
lowing analytic expression:
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We show F1(�) as a solid line in Fig. 2. For comparison,
we also show the reduced Fisher matrix F (⌦̂, ⌦̂0) for a
finite number of identical, quasi-isotropically distributed
pulsars6, for 1000 randomly selected pairs of sky direc-
tions (⌦̂, ⌦̂0). We see how F (⌦̂, ⌦̂0) indeed converges to
the function F1 as Npsr increases. Only in the limit
Npsr ! 1 is the Fisher matrix a function of the angle

\(⌦̂, ⌦̂0) only; otherwise, it depends on both ⌦̂ and ⌦̂0,
which translates into a scatter of the values of F (⌦̂, ⌦̂0)
when plotted as a function of \(⌦̂, ⌦̂0).

The dense-PTA Fisher matrix can be decomposed into
Legendre polynomials:

F1(⌦̂ · ⌦̂0) =
X

`

(2` + 1)F` P`(⌦̂ · ⌦̂0)

= 4⇡

X

`,m

F` Y`m(⌦̂)Y`m(⌦̂0), (72)

where the Y`m are the real spherical harmonics.
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To place pulsars quasi-isotropically we arrange them in equal

intervals in the azimuthal angle and with the polar angle ✓ =

cos
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(U), where U are a set of uniformly spaced ranging from -1

to 1.

FIG. 2. Values of the rescaled Fisher matrix for a finite num-
ber of quasi-isotropically distributed identical pulsars (10, 30
and 90, respectively), for 1000 randomly selected pairs of
SGWB directions in the sky (⌦̂, ⌦̂0), as a function of the an-
gle between them. The solid black line shows our analytic re-
sult, holding for an infinite number of isotropically distributed
identical pulsars.

We show the Legendre coe�cients F` in Fig. 3. Inter-
estingly, the amplitude of Legendre coe�cients decreases
monotonically with `, except for F1 ⇡ F0/7, which is
significantly lower than F2, and comparable to F3.

B. Minimum detectable dipolar anisotropy

Suppose the GWB takes the form

I = I0
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We show F1(�) as a solid line in Fig. 2. For comparison,
we also show the reduced Fisher matrix F (⌦̂, ⌦̂0) for a
finite number of identical, quasi-isotropically distributed
pulsars6, for 1000 randomly selected pairs of sky direc-
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=> The spherical harmonics are the eigenmaps of 
the idealized PTA Fisher matrix for Npsr →∞
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FIG. 5. First five eigenmaps of the Fisher matrix for Npsr = 10 (left column), 30 (middle column) and 90 (right column)
identical, quasi-isotropically distributed pulsars. As Npsr is increased, the first eigenmap approaches the monopole, and the
next few eigenmaps become more and more quadrupolar. For Npsr = 10, the eigenmaps do not resemble spherical harmonics
at all. The stars indicate the location of the identical pulsars.
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The eigenvalue problem (81) is then equivalent to the
discrete Npair ⇥ Npair eigenvalue-problem

X

J

FIJMJ
n =

1

⌃2
n

MI
n, (83)

FIJ ⌘ �I · �J

Npair
. (84)

We thus see that there are exactly Npair principal maps.
They do not form a complete set of all possible maps.
However, they are a complete set of observable maps for
a given PTA. Note that the eigenmaps that we derive
here are scalar maps, corresponding to the intensity of a
stochastic GW background; this is to be contrasted with
the strain eigenmaps derived in Ref. [41], which apply to
continuous (i.e. deterministic) GW searches.

We show the first 50 eigenvalues Fig. 4 for Npsr =
10, 30, 90, where we compare them against the dense-
pulsar limit Npsr ! 1. We see that, as Npsr increases,
the eigenvalues do converge towards the dense pulsar
limit. For Npsr = 90, one recognizes the sequences of
quasi-degenerate eigenvalues, corresponding to the de-
generate harmonics for Npsr ! 1. For lower Npsr, as
the Fisher matrix departs further from its Npsr ! 1
limit, eigenmaps “mix” and are no longer grouped in sub-
sets with similar eigenvalues. This is very similar to the
breaking of degeneracy in atomic levels in the presence of
a perturbed Hamiltonian. We show the first five eigen-
maps in Fig. 5, as a function of for Npsr. We see that
as Npsr becomes large, the first eigenmap approaches the
monopole, and the next two become quadrupolar. For
Npsr = 10, however, the eigenmaps do not at all resem-
ble spherical harmonics. More importantly, as we shall
see in Paper II, for realistic pulsar distributions, there
exist anisotropies to which a PTA is much more sensitive
than the lowest-order spherical harmonics.

V. CONCLUSIONS

We have derived a band-integrated Fisher matrix for
the intensity of a weak, anisotropic SGWB measured by
a PTA, Eq. (63). This Fisher matrix provides a versa-
tile tool with which we can better study the detectabil-
ity of anisotropies in the SGWB by PTAs. We derived
a simple expression the SNR of an anisotropic SGWB,
Eq. (65), generalizing previous results. We moreover de-
rived an exact analytic expression for the Fisher matrix
of an idealized PTA consisting of a dense and isotropic
distribution of pulsars on the sky. With this matrix, we
could recover the results of Ref. [21] for the detectabil-
ity of dipolar and hot-spot anisotropies. We illustrated
how our formalism is better adapted to realistic PTAs
by quantifying the convergence of the Fisher matrix of
a finite number of pulsars to that of the dense-pulsar
limit. In particular, we showed that, for a finite num-
ber of pulsar pairs, the eigenmaps of the Fisher matrix
are not spherical harmonics, commonly used to study
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FIG. 4. First fifty eigenvalues of quasi-isotropically dis-
tributed identical pulsars compared against the dense-pulsar
limit Npsr ! 1. The sequences of equal-noise black dots cor-
respond to multipoles ` = 0, 2, 1, 3, 4, 5, in that order. Hav-
ing a finite number of pulsars perturbs the eigenmaps away
from spherical harmonics and breaks the degeneracies in their
eigenvalues.

SGWB anisotropies. These Npair eigenmaps best char-
acterize the information content of the Fisher matrix. In
a follow-up paper, we will further explore the information
content of real PTAs, with unevenly distributed pulsars
of unequal noise properties.

In order to arrive at our new Fisher formalism, we re-
derived existing results with a fresh look, and presented
them in a geometric, coordinate-free form. Let us high-
light, in particular, the SGBW power spectrum (a rank-4
tensor) given in Eq. (6), and the pairwise timing response
function, Eq. (39), which characterizes the correlated re-
sponse of a pair of pulsars to a generic SGWB intensity
map. While in this paper we focused on the total inten-
sity of the SGWB, we have provided all the ingredients
needed to extend our results to a circularly or linearly
polarized SGWB. Our work could also be generalized to
non-Einsteinian polarizations [42]. Lastly, our Fisher for-
malism can easily be made more realistic: it can accom-
modate other sources of correlated pulsar timing residu-
als, such as global clock errors, and can be generalized to
a non-weak SGWB, by using the full expression for the
Fisher matrix, Eq. (55). Some elements of our Fisher for-
malism may moreover carry over to other gravitational-
wave detection techniques (such as space and ground-
based laser interferometers).

The strength of the approach outlined in this paper lies
in its ability to clearly and concisely describe the informa-
tion content of GW measurements. A similar approach
for measurements of the CMB [23] has allowed accurate,
rigorous, and intuitive estimates of the CMB’s sensitivity
to a variety of e↵ects. At the dawn of GW astronomy,
the development of such a tool is both timely and neces-
sary in order to learn as much as we can from the first
GW signals that have been and will be measured.

Warmup: idealized PTA
(normalized eigenvalue)1/2
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42 pulsars, timed for up to 17 years
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FIG. 2. Characteristic noise strains for 6 of the EPTA pul-
sars, produced using publicly available EPTA data [51] and
Hasasia [34, 35], see main text for details. The spikes at
1/yr and 2/yr arise from degeneracies with the Earth’s or-
bital motion when fitting the pulsar position and distance.
For J1713-0747, the spike at f ⇡ 5.4/yr is at the 67.8-day
period of this binary system.

samples. We have confirmed that our noise parameters
match well with the noise analysis described in [53].

After we have estimated the noise parameters for each
pulsar we use Hasasia [34, 35] to compute the total noise
power spectrum �

2
p(f), transmission function Tp(f), and

characteristic noise strain hc,p(f), for each one of the
EPTA pulsars. As an illustration, we show the charac-
teristic noise strains of 6 of the EPTA pulsars in Fig. 2.
We will use these specific 6 pulsars when comparing of
our results with those of TMG15 in Section VII.

B. Best pulsar pairs for isotropic GWB searches

In what follows we determine which pulsar pairs con-
tribute most to the total SNR2 from a cross-correlation
analysis. We will see that only a small number of pul-
sar pairs are needed to get most of the SNR2. A similar
analysis was performed in Ref. [54] for the Parkes PTA;
here we consider the EPTA and provide a much simpler,
analytic calculation.

As can be seen from Eq. (33), for a general GWB, each
pair I contributes FI(�I · A)2 to the SNR2. The rela-
tive ranking of pulsar pairs thus depends on the angular
dependence of the GWB, and there is no universal rank-
ing that holds for an arbitrary GWB. Since we expect
the GWB to be predominantly isotropic, it is sensible to
rank pulsar pairs under this assumption.

For an isotropic GWB A(⌦̂) = A
2
h, from Eq. (33) we

see that the SNR2 is given by

SNR2 = A
4
h

X

I

FI H
2
I . (41)

First, to check the soundness of our analysis, we esti-
mate the 95% sensitivity to a monopole, A

95%
h , such that

SNR[A95%
h ] = 2. Using Eq. (41), we find

A
95%
h =

p

2

 
X

I

FI H
2
I

!�1/4

. (42)

Using the characteristic noise strains we computed for the
EPTA dataset, we find A

95%
h ⇡ 2.5⇥10�15. If we restrict

ourselves to the 6 EPTA pulsars used in Refs. [20, 32], we
find instead A

95%
h ⇡ 3.4 ⇥ 10�15. This lies between the

95% upper-limit values found in these references, of 3.0⇥

10�15 [20] and 3.9 ⇥ 10�15 [32]. This gives us confidence
that our characteristic noise strains provide a realistic
description of the data.

From Eq. (41), we see that for an isotropic GWB, each
pair I = (p, q) contributes A

4
hFIH

2
I to the SNR2. We

have ranked the 861 pulsar pairs of the full EPTA dataset
in terms of their contributions to the SNR2. In Fig. 3
we show the normalized cumulative contributions of the
best 44 pulsar pairs, which contributed 90% of the SNR2.
While this is three times as many pairs as what can be
constructed with the 6 pulsars used in Refs. [20, 32], these
44 pairs represent 5% of the total number of pairs in the
full dataset, and should still constitute a manageable col-
lection of data. Moreover, we find that the 6 pulsars used
in Refs. [20, 32] only contribute 26% of the total SNR2 for
an isotropic GWB, while the best 15 pairs would amount
to 68% of the SNR2, as can be seen in Fig. 3.

This result is of significant importance to speed up
future analyses of real data. It is well known that ac-
counting for all the correlations between pulsar pairs in a
full Bayesian analysis of timing residuals is computation-
ally challenging. Here we see that it su�ces to include
a small, manageable number of pulsar pairs to recover
most of the SNR2. Our simple Fisher formalism allows
us to e�ciently determine which pairs to use for any given
dataset. This can be done not only for an isotropic GWB,
but also for any assumed angular dependence, if desired.

IV. SENSITIVITY TO GWB ANISOTROPIES
USING STANDARD BASES

A. General approach

Suppose that we model the GWB amplitude to be a
linear combination of known maps Mn:

A =
X

n

AnMn, (43)

where An are scalar amplitudes. The maps Mn could
be, for instance, spherical harmonics, or Dirac functions
centered at specific directions in the sky. They can be,
in general, any set of linearly independent maps, and
need not even be orthogonal nor normalized. We can
always define the dual maps M⇤

n (not to be confused with
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hc,p(f)

Characteristic noise strains obtained by analyzing residuals 
of each pulsar separately (no cross-correlation required)



Warmup: monopole sensitivity
Signal-to-noise ratio of a given GWB amplitude:

Apply to a pure monopole:
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Hellings & 
Downs curve
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GWBH(p̂ · q̂)
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GWB such that SNR = 2
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quadrupole components of the GWB. With this decom-
position, we obtain

� p̂p̂ · A =
4

3
A0 � 2

3X

i=1

p̂
i
A

i
1 +

3X

i,j=1

p̂
i
p̂
j
A

ij
2 . (38)

Thus, as noted in Paper I, the auto-correlated power
spectra constrain specific combinations of the GWB
monopole, dipole and quadrupole. Importantly, when al-
lowing for anisotropies, one must self-consistently prop-
agate their impact on the single-pulsar noises, i.e. one
must account for “common red processes” which arise
from the dipole and quadrupole pieces of the GWB, in
addition to its monopole. If autocorrelations are used
to set upper limits on a common red process, their de-
pendence on dipole and quadrupole GWB anisotropies
systematically degrades the inferred upper limits on the
monopole.

One of our main objectives here is to explore the abil-
ity of PTAs to detect the GWB. While autocorrelations
do contain information, they cannot be used to claim a
detection [43]. As a consequence we focus on the corre-
lations between di↵erent pulsars in the remainder of this
paper.

III. DATASET USED IN THIS PAPER

Throughout most of this paper, to provide a concrete
example, we will apply our formalism to the full EPTA
dataset described in the last data release [44]. The EPTA
is composed of the high-precision timing of 42 millisecond
pulsars for up to 17 years with an overlap of 21 pulsars
with the NANOGrav Nine-Year dataset [45]. We show
the locations of the EPTA pulsars relative to the Galactic
plane in Fig. 1.

Out of the 42 EPTA pulsars, six were determined to
contribute 90% of the SNR2 in simulated continuous GW
searches [33], and were used for searches of anisotropies in
the GWB in Ref. [32] (hereafter, TMG15). Specifically,
these six pulsars are J0613-0200, J1012+5307, J1600-
3053, J1713+0747, J1744-1134, and J1909-3744. Their
locations in the sky are shown in Fig. 1, and their char-
acteristic noise strains in Fig. 2. We will use this subset
of the EPTA in Section VII to compare our sensitivity
estimates to those of TMG15.

A. Evaluation of the characteristic noise strains

As described in the previous section, the primary quan-
tity characterizing pulsar noise properties is the charac-
teristic noise strain. Here, we explain how we estimate
the characteristic noise strains of all 42 EPTA pulsars.

We model the intrinsic white noise in the standard way:

[h�Rp(ti)�Rp(tj)i]white =
⇣
EFACp,b �

2
p,i

+EQUAD2
p,b

⌘
�ij , (39)

—J0613-0200

J1012+5307—

J1600-3053

—J1713+0747
J1744-1134

J1909-3744

FIG. 1. Locations of the EPTA pulsars, in equatorial coor-
dinates. We use the full EPTA dataset in Sections III-VI.
The subset of 6 highlighted pulsars is used when compare our
results to those of Ref. [32] in Section VII. The background
map is the Stockert and Villa-Elisa 1.4 GHz continuum map
[46, 47], which situates the positions of the pulsars relative to
the Galactic plane.

where ti is the i
th time-of-arrival of pulsar p, �p,i is the

uncertainty in the i
th timing residual of pulsar p, and the

white noise parameters, EFACp,b and EQUADp,b, are in-
cluded for each observing system b (i.e. di↵erent telescope
and/or backends). EFAC is dimensionless and EQUAD
has dimensions of time (we use units of seconds for our
analysis). Our priors on these parameters were a flat-
linear prior on EFAC 2 [0.01,10] and a flat-log prior on
EQUAD 2 [10�8.5

, 10�3] sec. The e↵ects of variations
in the dispersion measure (DM) and intrinsic red-noise
(RN) were modeled with a power-law spectral density of
the form

�
2
p,X(f) =

A
2
X

12⇡2
(f/fyr)

��X yr3, X = RN or DM, (40)

where ARN is independent of radio frequency ⌫ whereas
ADM / ⌫

�2. We use a flat-linear prior on the power-law
indices, �X 2 [0, 7] and a flat-log prior on the dimension-
less amplitudes AX 2 [10�20

, 10�11], for both RN and
DM. The prior on the power-law indices have been cho-
sen so that they range from white noise (�X = 0) to
the steepest power-law for which the fit to the timing
model removes any dependence on the functional form for
these spectral densities at low frequencies (f < 1/Tobs)
[48]. This range also covers the expected variation in the
power-law index due to random walks in phase, period
and period derivatives (which give �RN = 2, 4, 6, respec-
tively) [19]. Note that we do not include a “common red
noise” process in our analysis. This is consistent with
our weak-signal assumption, and allows us to fit for each
pulsar noise properties independently.

In order to extract values for these noise parameters
we used the Parallel Tempering Markov-Chain Monte
Carlo sampler PTMCMCSampler [49], the PTA software
Enterprise [50], and the TOA and timing model param-
eters used in the EPTA data release [51] from the EPTA
repository [52]. We set the noise parameters to equal
their median values from MCMC chains that contain 106

Application to 6 EPTA pulsars

Were found to be the best pulsars for continuous wave searches

• We find a 2-σ sensitivity

• Compare with EPTA collaboration 95% upper limits of 
3.0e-15 (Lentati et al. 2015) and 3.9e-15 (Taylor et al. 2015)

• With full EPTA array we estimate 95% sensitivity of 2.5e-15
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A95%
GWB ⇡ 3.4⇥ 10�15
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Cumulative normalized SNR2

The 44 best pairs (out of 861) provide 90% of SNR2

Best pulsar pairs for monopole searches
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SNR2 = A4
GWB

X

p 6=q

Fpq [H(p̂ · q̂)]2 SNR2 contribution of 
each pulsar pair



<latexit sha1_base64="wIqPb1TDDHt5He581eJ32QmdRto=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJVEFF1W3bisYB/QhDKZTNqhk5kwMxFKiBt/xY0LRdz6F+78GydtFtp6YZjDOfdyzz1BwqjSjvNtVZaWV1bXquu1jc2t7R17d6+jRCoxaWPBhOwFSBFGOWlrqhnpJZKgOGCkG4xvCr37QKSigt/rSUL8GA05jShG2lAD+8ALBAvVJDZf5sVIjzBi2VWeD+y603CmBReBW4I6KKs1sL+8UOA0JlxjhpTqu06i/QxJTTEjec1LFUkQHqMh6RvIUUyUn00vyOGxYUIYCWke13DK/p7IUKwKk6az8KjmtYL8T+unOrr0M8qTVBOOZ4uilEEtYBEHDKkkWLOJAQhLarxCPEISYW1Cq5kQ3PmTF0HntOGeN5y7s3rzuoyjCg7BETgBLrgATXALWqANMHgEz+AVvFlP1ov1bn3MWitWObMP/pT1+QOPBpeZ</latexit>

A
observable Npair-dimensional 

space spanned by the γpq

unobservable infinite-
dimensional space 

orthogonal to all the γpq
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Ainvisible

=> Can at most observe/ constrain Npair independent 
components of the GWB angular dependence



<latexit sha1_base64="Ltp8siTPJ/T4rkMZlGTeLyqogUM="></latexit>

A(⌦̂) =

NmapsX

n=1

AnMn(⌦̂)

Suppose we have good physical reasons to expect

We want to estimate the sensitivity to the
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An

Searching for anisotropies of known shape

<latexit sha1_base64="Fp4dLAq6DfqACrScAr9g+MFMoQI=">AAACI3icbVDLSgMxFM34rPVVdekmWIQKWmZEUQShKojLCvYBbR0yaaqhSWZI7hTLMP/ixl9x40Ipblz4L6a1C7UeCJyccy/33hNEghtw3Q9nanpmdm4+s5BdXFpeWc2trVdNGGvKKjQUoa4HxDDBFasAB8HqkWZEBoLVgu7F0K/1mDY8VDfQj1hLkjvFO5wSsJKfO2kCewAtExr20kJTErinRCRnqa928c+v3MGnuHB5m+x56Y6fKJn6ubxbdEfAk8Qbkzwao+znBs12SGPJFFBBjGl4bgSthGjgVLA024wNiwjtkjvWsFQRyUwrGd2Y4m2rtHEn1PYpwCP1Z0dCpDF9GdjK4dbmrzcU//MaMXSOWwlXUQxM0e9BnVhgCPEwMNzmmlEQfUsI1dzuiuk90YSCjTVrQ/D+njxJqvtF77DoXh/kS+fjODJoE22hAvLQESqhK1RGFUTRI3pGr+jNeXJenIHz/l065Yx7NtAvOJ9fvC+kQQ==</latexit>

cov(An,Am) = (F�1)nm
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Fnm ⌘ Mn ·F ·Mm
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   only well defined if Nmaps ≤  Npair  

known 
basis maps



Example 1: GWB amplitudes in coarse pixels
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Nside = 1, Npix = 12
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Nside = 4, Npix = 192

Sensitivity to the monopole (i.e. average GWB amplitude):
- 1 single pixel (i.e. pure monopole): 
- 12 pixels: 
- 192 pixels: 

<latexit sha1_base64="2DTtXJaVNXA4Szn5cZGnUYBTMOk=">AAACCXicbVDLSsNAFJ34rPUVdelmsBTcGJJiUBdC1Y3LCvYBTRom00k7dPJgZiKUkK0bf8WNC0Xc+gfu/BunbRbaeuDC4Zx7ufceP2FUSNP81paWV1bX1ksb5c2t7Z1dfW+/JeKUY9LEMYt5x0eCMBqRpqSSkU7CCQp9Rtr+6Gbitx8IFzSO7uU4IW6IBhENKEZSSZ4Or7xhL7uwnWoOL2HNsKEjaUgEtMxedmLZuadXTMOcAi4SqyAVUKDh6V9OP8ZpSCKJGRKia5mJdDPEJcWM5GUnFSRBeIQGpKtohNQ2N5t+ksOqUvowiLmqSMKp+nsiQ6EQ49BXnSGSQzHvTcT/vG4qg3M3o1GSShLh2aIgZVDGcBIL7FNOsGRjRRDmVN0K8RBxhKUKr6xCsOZfXiStmmHZhnl3WqlfF3GUwCE4AsfAAmegDm5BAzQBBo/gGbyCN+1Je9HetY9Z65JWzByAP9A+fwD5+ZdW</latexit>

A95%
h = 2.5⇥ 10�15

<latexit sha1_base64="z86NKkv8I2v+jRY1Tg0gONGy8+c=">AAACCXicbVDLSsNAFJ3UV62vqEs3g6XgxpKIRV0IVTcuK9gHNGmYTCft0MkkzEyEErJ146+4caGIW//AnX/jtM1CWw9cOJxzL/fe48eMSmVZ30ZhaXllda24XtrY3NreMXf3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2RzcTv/1AhKQRv1fjmLghGnAaUIyUljwTXnnDXnpRcyoZvIS1qgUdRUMioW310mO7lnlm2apaU8BFYuekDHI0PPPL6Uc4CQlXmCEpu7YVKzdFQlHMSFZyEklihEdoQLqacqS3uen0kwxWtNKHQSR0cQWn6u+JFIVSjkNfd4ZIDeW8NxH/87qJCs7dlPI4UYTj2aIgYVBFcBIL7FNBsGJjTRAWVN8K8RAJhJUOr6RDsOdfXiStk6qtE7w7Ldev8ziK4AAcgiNggzNQB7egAZoAg0fwDF7Bm/FkvBjvxsestWDkM/vgD4zPH/bXl1Q=</latexit>

A95%
h = 5.0⇥ 10�15

<latexit sha1_base64="BtwxccrHAZqhM0h2MJncb7diaRI=">AAACCXicbVDLSsNAFJ3UV62vqEs3g6XgxpCIpXUhVN24rGAf0KRhMp20QycPZiZCCdm68VfcuFDErX/gzr9x2mahrQcuHM65l3vv8WJGhTTNb62wsrq2vlHcLG1t7+zu6fsHbRElHJMWjljEux4ShNGQtCSVjHRjTlDgMdLxxjdTv/NAuKBReC8nMXECNAypTzGSSnJ1eOWO+ulF1a5k8BLWjDq0JQ2IgJbZT0+taubqZdMwZ4DLxMpJGeRouvqXPYhwEpBQYoaE6FlmLJ0UcUkxI1nJTgSJER6jIekpGiK1zUlnn2SwopQB9COuKpRwpv6eSFEgxCTwVGeA5EgselPxP6+XSL/upDSME0lCPF/kJwzKCE5jgQPKCZZsogjCnKpbIR4hjrBU4ZVUCNbiy8ukfWZYVcO8Oy83rvM4iuAIHIMTYIEaaIBb0AQtgMEjeAav4E170l60d+1j3lrQ8plD8Afa5w8Gspde</latexit>

A95%
h = 7.8⇥ 10�15

EPTA



Example 2: spherical harmonic amplitudes
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FIG. 5. Sensitivity of the EPTA to a coarsely pixelized GWB, for Npix = 12, 48 and 192 HEALPix pixels. Specifically, this
shows the sensitivity in each coarse pixel after marginalizing over all other pixels.

We show C
95%
` in Fig. 6, for several values of `max.

We see that for any given coe�cient C`, the sensitivity
systematically degrades as `max is increased. In partic-
ular, as anticipated, the sensitivity to the monopole sig-
nificantly worsens as `max is increased. This is because
the monopole is correlated with other spherical harmon-
ics, and as one enlarges the space of functions to be
searched over, the uncertainty on the monopole ampli-
tude increases.

Let us remark that the coe�cients C` are statistically
correlated. We explicitly give their correlation coe�-
cients in Tabs. I for `max = 2 and 5. We see that these
correlations coe�cients are in general not small, and de-
pend on the chosen `max.

Finally, note that this analysis specifically estimates
the minimum amplitudes necessary for a detection,
through pulsar timing cross correlations. In addition,
the monopole, dipole and quadrupole can be constrained
by pulsar autocorrelations, as discussed in Section II G.
In the limit that autocorrelations constrain the ` = 0, 1, 2
harmonic coe�cients much more tightly than the cross
correlations, the variance of the remaining coe�cients
should be obtained by inverting the Fisher matrix re-
stricted to these coe�cients, leading to a lower noise for
the C` with ` � 3. We have checked explicitly that this
lowers the noise by no more than ⇠ 10 � 20%.

In conclusion, we have demonstrated that our Fisher
formalism allows to forecast the sensitivity of a PTA
to the spherical-harmonic amplitudes of the GWB, for
a given cuto↵ `max. We have applied this specifically
for the EPTA, and shown that the minimum detectable
amplitudes are systematically larger than allowed by
the physical prior, given current upper limits on the
monopole. This seems to indicate that spherical har-
monics are a suboptimal choice of basis for anisotropy
searches. We will specifically compare our results with
those of TMG15 in Section VII.
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FIG. 6. Approximate 95% sensitivity of the full EPTA to the
coe�cients C` ⌘

P
m A2

`m/(2`+1), as a function of the cuto↵
`max, beyond which the coe�cients are assumed to strictly
vanish. The physical prior is computed for a monopole upper
limit Ah  4 ⇥ 10�15 [32], and is systematically lower than
the minimum detectable anisotropy amplitudes.

V. PRINCIPAL MAPS OF A PTA

A. Motivation and formalism

As highlighted in the previous section, one of the chal-
lenges when using standard bases to decompose the GWB
intensity is that the amplitudes of the basis maps are
statistically correlated. Moreover, their covariance ma-
trix depends on the number of maps considered. As a
result, one cannot easily set model-independent limits on
the map amplitudes.

If one is completely agnostic regarding the angular de-
pendence of the GWB, it is best to search under the
lamppost, i.e. look for the amplitudes of maps which are
best-measured by a given PTA, and uncorrelated with
one another. To do so, we construct the Npair unit-norm
principal maps {Mn}. They are defined to extremize
SNR2 = Mn · F · Mn, under the normalization con-
straint Mn · Mn = 1. The solutions of this constrained

<latexit sha1_base64="KWYcdBxp3GsbGklT/7EDRbHUVss="></latexit>
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A`mY`m(⌦̂)
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Issue: sensitivity to each coefficient (including monopole), 
systematically degrades when including more basis maps.

Reason: standard basis maps are statistically correlated.

➡ One needs to have robust priors on the basis maps 
present in the data to make meaningful forecasts.

Searching for anisotropies of known shape

In other words, with standard basis maps,
forecasts are dependent on assumed cutoff.
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FIG. 1: 95% upper limits on the strain amplitude, where Cl =
Pl

m=�l |clm|2/(2l + 1). Left: all-band anisotropy parametrization
and frequency-dependent parametrization (ii). The right axis is the ratio of the upper limit to the monopole. The inset figure shows
95% upper limits on (Cl/4⇡)

1/4 which are marginalized over the strain amplitude for the all-band anisotropy parametrization and a
constant likelihood analysis. Our limits reflect the constraints of the physical prior. Right: all-band anisotropy parametrization, where
the clm values are obtained by mapping cross-correlation values to the spherical harmonic basis, without physical prior rejection.

values, ~�, such that ~� = H~c. A single row of the ma-
trix H will have entries corresponding to the ORF be-
tween pulsars a and b evaluated for all basis terms. In
the spherical-harmonic basis, such a row would consist
of

⇣
�
(ab)
00 �

(ab)
1�1 · · · �(ab)

lm

⌘
, and for a pixel basis this is

⇣
�
(ab)

⌦̂1
�
(ab)

⌦̂2
· · · �(ab)

⌦̂N

⌘
. Having recovered posterior sam-

ples of the vector ~�, we map these to samples of ~c via
~c = H

+~�, where H
+ corresponds to the Moore-Penrose

pseudo-inverse of the matrix H [46, 47]. The results
for mappings to the spherical-harmonic basis with vary-
ing lmax are shown in Fig. 1(right). The data support
such strong anisotropy signatures in this model because
the joint-posterior in the cross-correlation values are con-

1.6 2.4 3.2 4.0 4.8 5.6 6.4
A95% ul

h (��̂) [⇥10�14]

FIG. 2: 95% upper limits on the GW strain amplitude in each
pixel. These limits are obtained by mapping from the Bayesian
MCMC-sampled cross-correlation values to a pixelated ORF ba-
sis (Npix = 12288). White stars show the pulsar locations.

sistent with essentially the entire range of [�1, 1], which
when mapped to a spherical-harmonic ORF-basis leads to
large clm values. There is nothing to penalize these large
anisotropy coefficients, which lead to highly anisotropic
(and possibly negative) GW power distributions and would
otherwise be restricted by the physical prior. This supports
to our claim that the constraints in Fig. 1 (left) are prior-
dominated.

We also map our recovered cross-correlation samples to
a pixel basis with 12288 equal-area pixels on the sky. We
supplement our mapping with the additional normalization
constraint that

R
S2 P (⌦̂)d⌦̂ ⇡

PNpix

i=1 c(⌦̂i)�⌦̂i = 4⇡.
The resulting SGWB power in each pixel is marginalized
over all other pixels and truncated to obtain the positive
1D-marginalised power PDF before it is integrated over to
obtain the upper limit on the strain-amplitude in that pixel.
The result is shown in Fig. 2, where we see the distinc-
tive overlapping antenna patterns of the pulsars mapping
out the sensitivity of the PTA to the background strain-
amplitude. The constraints on Ah from each pixel are quite
poor, and in some cases are more than an order of magni-
tude worse than the all-sky upper limit. As we decrease
the resolution of the pixelation the constraints in each pixel
become tighter, until we reach the limit of one pixel, which
recovers the usual all-sky upper-limit. Figure 2 can also
help to explain the results in the right panel of Fig. 1, where
we see that the distribution of pulsars in our array leads to
the sub-optimal overlapping of the antenna response func-
tions, which in turn causes insensitivities around the 4 clus-
tered pulsars and on large angular scales. Hence, we will
lack sensitivity to large angular scale anisotropy (l ⇠ 1),
which is reflected in the right panel of Fig. 1. Moreover,
this sensitivity map illustrates the importance of timing
pulsars from all over the sky to ensure a more uniform sen-
sitivity to GW strain, which will be possible through inter-

Taylor et al 2015: derive Npix = 12288 “upper limit map” 
using 6 EPTA pulsars, i.e. 15 pairs

Agnostic searches for anisotropies



This map represent constraints on the 
observable component only
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A

unobservable component can 
be arbitrarily large!
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Monopole upper limit

FIG. 1: 95% upper limits on the strain amplitude, where Cl =
Pl

m=�l |clm|2/(2l + 1). Left: all-band anisotropy parametrization
and frequency-dependent parametrization (ii). The right axis is the ratio of the upper limit to the monopole. The inset figure shows
95% upper limits on (Cl/4⇡)

1/4 which are marginalized over the strain amplitude for the all-band anisotropy parametrization and a
constant likelihood analysis. Our limits reflect the constraints of the physical prior. Right: all-band anisotropy parametrization, where
the clm values are obtained by mapping cross-correlation values to the spherical harmonic basis, without physical prior rejection.

values, ~�, such that ~� = H~c. A single row of the ma-
trix H will have entries corresponding to the ORF be-
tween pulsars a and b evaluated for all basis terms. In
the spherical-harmonic basis, such a row would consist
of

⇣
�
(ab)
00 �

(ab)
1�1 · · · �(ab)

lm

⌘
, and for a pixel basis this is

⇣
�
(ab)

⌦̂1
�
(ab)

⌦̂2
· · · �(ab)

⌦̂N

⌘
. Having recovered posterior sam-

ples of the vector ~�, we map these to samples of ~c via
~c = H

+~�, where H
+ corresponds to the Moore-Penrose

pseudo-inverse of the matrix H [46, 47]. The results
for mappings to the spherical-harmonic basis with vary-
ing lmax are shown in Fig. 1(right). The data support
such strong anisotropy signatures in this model because
the joint-posterior in the cross-correlation values are con-
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A95% ul
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FIG. 2: 95% upper limits on the GW strain amplitude in each
pixel. These limits are obtained by mapping from the Bayesian
MCMC-sampled cross-correlation values to a pixelated ORF ba-
sis (Npix = 12288). White stars show the pulsar locations.

sistent with essentially the entire range of [�1, 1], which
when mapped to a spherical-harmonic ORF-basis leads to
large clm values. There is nothing to penalize these large
anisotropy coefficients, which lead to highly anisotropic
(and possibly negative) GW power distributions and would
otherwise be restricted by the physical prior. This supports
to our claim that the constraints in Fig. 1 (left) are prior-
dominated.

We also map our recovered cross-correlation samples to
a pixel basis with 12288 equal-area pixels on the sky. We
supplement our mapping with the additional normalization
constraint that

R
S2 P (⌦̂)d⌦̂ ⇡

PNpix

i=1 c(⌦̂i)�⌦̂i = 4⇡.
The resulting SGWB power in each pixel is marginalized
over all other pixels and truncated to obtain the positive
1D-marginalised power PDF before it is integrated over to
obtain the upper limit on the strain-amplitude in that pixel.
The result is shown in Fig. 2, where we see the distinc-
tive overlapping antenna patterns of the pulsars mapping
out the sensitivity of the PTA to the background strain-
amplitude. The constraints on Ah from each pixel are quite
poor, and in some cases are more than an order of magni-
tude worse than the all-sky upper limit. As we decrease
the resolution of the pixelation the constraints in each pixel
become tighter, until we reach the limit of one pixel, which
recovers the usual all-sky upper-limit. Figure 2 can also
help to explain the results in the right panel of Fig. 1, where
we see that the distribution of pulsars in our array leads to
the sub-optimal overlapping of the antenna response func-
tions, which in turn causes insensitivities around the 4 clus-
tered pulsars and on large angular scales. Hence, we will
lack sensitivity to large angular scale anisotropy (l ⇠ 1),
which is reflected in the right panel of Fig. 1. Moreover,
this sensitivity map illustrates the importance of timing
pulsars from all over the sky to ensure a more uniform sen-
sitivity to GW strain, which will be possible through inter-

Taylor et al. 2015 Our ``forecast” for this map
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These are not upper limits on the GWB in each pixel
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Our ``forecast” for this map
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Equivalent map with 1 pair only. 
The observable space is smaller (1-
dimensional), better “constraints”

These are not upper limits on the GWB in each pixel



➡ Allow to search under the PTA lampost

➡ Npair statistically independent GWB maps 
spanning the space of observable maps  

“Principal maps” = eigenmaps of the Fisher matrix

➡ Can search of the amplitudes of all principal maps 
simultaneously without increasing the noise of each one. 

Agnostic searches for anisotropies
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FIG. 8. Noise eigenvalues of the first 20 principal maps of
the EPTA. Specifically, the principal maps are normalized to
unity, and here we show the minimum amplitude of the co-
e�cients multiplying them (with dimensions of characteristic
strain) required for a 95%-confidence detection.

FIG. 9. Monopole component (upper panel) and correlation
coe�cient for the first 20 EPTA principal maps. The correla-
tion coe�cient is defined as corr(Mn,1) ⌘ Mn ·F ·1/[(Mn ·
F ·Mn)(1 ·F · 1)]1/2.

C. Possible extensions of principal maps singling
out the monopole

The principal maps provide a useful basis to decom-
pose the GWB if one is fully agnostic about its angular
distribution. In practice, however, this is not the case:
one does expect a significant monopole component in the
GWB. In other words, physical considerations isolate a
preferred map, which should always be included in GWB
searches. This map is in general di↵erent from the prin-
cipal maps, which are entirely based on the noise and
geometric properties of the PTA, rather than external
physical considerations.

Fig. 9 shows the monopole components of the first 20
EPTA principal maps, as well as their correlation coef-

FIG. 10. Dimensionless GWB intensity map used to illustrate
the map reconstruction technique in Section VB, as well as
the frequentist approach in Sec. VI. This map is normalized
to a unit monopole.

ficient with the monopole. Even though the monopole
has the largest projection on the first principal map, we
see that it still has significant projections on and correla-
tions with some of the higher-order eigenmaps. In other
words, higher-order eigenmaps are (i) not anisotropic and
(ii) statistically correlated with the monopole.

In order to alleviate issue (i), one could try to construct
a set of “principal anisotropies”, {An}, which are orthog-
onal to the monopole, i.e. satisfy An · 1 = 0. One would
then find the unit-norm maps extremizing An · F · An

under this additional constraint. This optimization prob-
lem admits Npair � 1 solutions, which, in addition to
the monopole, form a basis of Npair maps which can be
used to search for a monopole and anisotropies. How-
ever, the principal anisotropies derived in this fashion
are in general statistically correlated with the monopole,
An · F · 1 6= 0, thus would inflate the error bar on the
monopole when included in a search.

To alleviate issue (ii), one could construct a set of
“monopole-uncorrelated maps”, {Bn}, which are uncor-
related with the monopole, i.e. satisfy Bn · F · 1 = 0.
One would then find the unit-norm maps extremizing
Bn · F · Bn under this additional constraint. This opti-
mization problem also admits Npair � 1 solutions, which,
in addition to the monopole, form a basis of Npair maps
which can be used to search for a monopole and uncor-
related maps. However, the maps Bn derived in this
fashion in general have a non-zero projection on the
monopole, Bn · 1 6= 0. Thus, detecting a non-zero am-
plitude for these maps would not imply that one has de-
tected anisotropies in the data.

One could try and alleviate both issues simultaneously
by searching for a set of normalized maps Cnwhich are
anisotropic and uncorrelated with the monopole, with
extremal SNR2. As long as F · 1 is not colinear with 1
(which is the case if the monopole is not an eigenmap

Issue: have to give up the monopole as a “preferred map”



“Reconstructing” the (observable part of the) GWB

• Search for amplitudes         of all principal maps

•  Define the reconstructed map as

13

FIG. 7. First 9 principal maps of the EPTA, ordered by increasing noise. The maps have unit norm and their sign was chosen
so that their average value (i.e. projection on the monopole) is positive, i.e. Mn · 1 > 0.

bAn ⌘ Mn · bA. Concretely, using this expression with
Eq. (31), we see that the bAn are linear combinations
of the timing residual cross-spectra bRI(f), appropriately
integrated over frequencies.

We can then use the principal maps to attempt to
“reconstruct” the GWB angular dependence. Provided
some of the individual principal map amplitudes bAn

are measured with su�ciently high individual SNRn ⌘

bAn/⌃n (say, SNRn > 3), we can define the reconstructed
map

Arecon ⌘

X

n;SNRn>3

bAn Mn. (73)

This procedure is analogous to the production of “dirty
map” in radio interferometry, i.e. including the contribu-
tions of observed “visibilities”, and setting the remaining
(unobserved) piece to zero. Unlike interferometry, how-
ever, the ability to reconstruct a map is a strong function
of its amplitude. Indeed, for a single interferometer, dif-
ferent visibilities typically have comparable noise, and as
a consequence all contribute to the dirty map once any
one of them is detected with su�ciently high SNR. In
contrast, the noise of principal maps of a PTA increases

steeply with the principal map number, see Fig. 8 for the
principal maps of the EPTA. Note that this property is
not a result of unequal pulsar noises: even for an array
of equal pulsars, densely and isotropically distributed on
the sky, the eigenvalues of the Fisher matrix are steep
function of principal map index (see Fig. 4 in Paper I).

We illustrate the map reconstruction technique with
the EPTA in Fig. 11. In the top row, we show the recon-
structed maps obtained if the underlying GWB is a pure
monopole, with amplitudes Ah = 10�14

,
p

3 ⇥ 10�14
, 3 ⇥

10�14, from left to right. The bottom row shows the
reconstructed maps obtained if the underlying GWB is
proportional to the map shown in Fig. 10, with the same
monopole amplitude. We see that even with these very
large amplitudes, the reconstructed maps have little re-
semblance with the underlying GWB intensity distribu-
tion. Note, also, that the overall amplitude of these maps
(corresponding to total SNR of 30, 100 and 300, respec-
tively, from left to right), is so large that they are most
likely inconsistent with the weak-signal limit.
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bAn

•  Similar to making a “dirty map” in radio interferometry: 
keep only the measured pieces of information and set the 
non-measured ones to zero.

•  Note: the reconstructed map still formally has “infinite error 
bars” due to unobservable component…
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FIG. 11. Reconstructions of a purely isotropic GWB (top row) and of the “GWB” map shown in Fig. 10 (bottom row) with the
EPTA. In each column, from left to right, the input map has monopole amplitude A2

h = 10�28, 3⇥ 10�28, 10�27, respectively.
For the isotropic input map, these reconstructed maps are built from 3, 9 and 21 principal maps detected with individual SNR
> 3. For the “GWB” map, the reconstructed maps are built from 3, 13 and 26 principal maps.

of the Fisher matrix), the two constraints are indepen-
dent. The resulting optimization problem thus admits
Npair � 2 solutions. To span the Npair-dimensional set of
observable maps, one must supplement these monopole-
uncorrelated principal anisotropies with the monopole
and F · 1� (F · 1)1 (properly normalized). Indeed, this
additional map is orthogonal to the monopole and to all
the Cn maps (which stems from the condition that the Cn

are orthogonal to and uncorrelated with the monopole),
thus linearly independent from all of them. However, this
additional map is in general not statistically independent
from the monopole nor from the maps Cn. Therefore, this
construction still does not alleviate the issue.

To conclude, unless the monopole is an eigenmap of
the Fisher matrix, there is no good strategy to agnosti-
cally search for anisotropies within the standard Bayesian
setup. In Section VI, we explore a frequentist approach
to this problem.

VI. FREQUENTIST APPROACH TO
AGNOSTIC ANISOTROPY SEARCHES

In the previous sections we have highlighted the
di�culties in carrying a standard Bayesian search
for anisotropies of pre-determined shapes alongside a
monopole. Here we take a di↵erent approach, and derive
a criterion to assess the presence of anisotropies in the
data, regardless of their specific shape, without requiring
a basis of maps on which to decompose the GWB.

A. Derivation of the frequentist criterion

Given the data translated into an estimator bA for the
GWB amplitude, one may seek the monopole amplitude
that minimizes the �

2, given by

�
2(A0) =

⇣
A01 � bA

⌘
· F ·

⇣
A01 � bA

⌘
. (74)

The best-fit monopole amplitude is then simply

A
bf
0 =

1 · F · bA
1 · F · 1

. (75)

The SNR of the best-fit monopole is then SNRbf =
|A

bf
0 |

p
1 · F · 1. This quantifies how well the best-fit

monopole is detected relative to statistical noise. How-
ever, it does not quantify whether a pure monopole is a
good fit to the data or not.

To quantify the goodness of fit, one can examine the
�
2 at this best-fit value. After simplification, one obtains

�
2
bf ⌘ �

2
�
A

bf
0

�
= bA · F · bA �

(1 · F · bA)2

1 · F · 1

= bA · eF · bA, (76)

where we have defined the projected Fisher matrix

eF ⌘ F �
(F · 1) ⌦ (1 · F)

1 · F · 1
, (77)

which satisfies 1 · eF = eF · 1 = 0. This implies that any
monopole contribution to bA drops out of �

2
bf .
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FIG. 11. Reconstructions of a purely isotropic GWB (top row) and of the “GWB” map shown in Fig. 10 (bottom row) with the
EPTA. In each column, from left to right, the input map has monopole amplitude A2

h = 10�28, 3⇥ 10�28, 10�27, respectively.
For the isotropic input map, these reconstructed maps are built from 3, 9 and 21 principal maps detected with individual SNR
> 3. For the “GWB” map, the reconstructed maps are built from 3, 13 and 26 principal maps.

of the Fisher matrix), the two constraints are indepen-
dent. The resulting optimization problem thus admits
Npair � 2 solutions. To span the Npair-dimensional set of
observable maps, one must supplement these monopole-
uncorrelated principal anisotropies with the monopole
and F · 1� (F · 1)1 (properly normalized). Indeed, this
additional map is orthogonal to the monopole and to all
the Cn maps (which stems from the condition that the Cn

are orthogonal to and uncorrelated with the monopole),
thus linearly independent from all of them. However, this
additional map is in general not statistically independent
from the monopole nor from the maps Cn. Therefore, this
construction still does not alleviate the issue.

To conclude, unless the monopole is an eigenmap of
the Fisher matrix, there is no good strategy to agnosti-
cally search for anisotropies within the standard Bayesian
setup. In Section VI, we explore a frequentist approach
to this problem.

VI. FREQUENTIST APPROACH TO
AGNOSTIC ANISOTROPY SEARCHES

In the previous sections we have highlighted the
di�culties in carrying a standard Bayesian search
for anisotropies of pre-determined shapes alongside a
monopole. Here we take a di↵erent approach, and derive
a criterion to assess the presence of anisotropies in the
data, regardless of their specific shape, without requiring
a basis of maps on which to decompose the GWB.

A. Derivation of the frequentist criterion

Given the data translated into an estimator bA for the
GWB amplitude, one may seek the monopole amplitude
that minimizes the �

2, given by

�
2(A0) =

⇣
A01 � bA

⌘
· F ·

⇣
A01 � bA

⌘
. (74)

The best-fit monopole amplitude is then simply

A
bf
0 =

1 · F · bA
1 · F · 1

. (75)

The SNR of the best-fit monopole is then SNRbf =
|A

bf
0 |

p
1 · F · 1. This quantifies how well the best-fit

monopole is detected relative to statistical noise. How-
ever, it does not quantify whether a pure monopole is a
good fit to the data or not.

To quantify the goodness of fit, one can examine the
�
2 at this best-fit value. After simplification, one obtains

�
2
bf ⌘ �

2
�
A

bf
0

�
= bA · F · bA �

(1 · F · bA)2

1 · F · 1

= bA · eF · bA, (76)

where we have defined the projected Fisher matrix

eF ⌘ F �
(F · 1) ⌦ (1 · F)

1 · F · 1
, (77)

which satisfies 1 · eF = eF · 1 = 0. This implies that any
monopole contribution to bA drops out of �

2
bf .
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3.1 6.0 8.8 11.7 14.5

-6.3 4.1 14.6 25.1 35.6
reconstructed A(��̂) [⇥10�28]

FIG. 11. Reconstructions of a purely isotropic GWB (top row) and of the “GWB” map shown in Fig. 10 (bottom row) with the
EPTA. In each column, from left to right, the input map has monopole amplitude A2

h = 10�28, 3⇥ 10�28, 10�27, respectively.
For the isotropic input map, these reconstructed maps are built from 3, 9 and 21 principal maps detected with individual SNR
> 3. For the “GWB” map, the reconstructed maps are built from 3, 13 and 26 principal maps.

of the Fisher matrix), the two constraints are indepen-
dent. The resulting optimization problem thus admits
Npair � 2 solutions. To span the Npair-dimensional set of
observable maps, one must supplement these monopole-
uncorrelated principal anisotropies with the monopole
and F · 1� (F · 1)1 (properly normalized). Indeed, this
additional map is orthogonal to the monopole and to all
the Cn maps (which stems from the condition that the Cn

are orthogonal to and uncorrelated with the monopole),
thus linearly independent from all of them. However, this
additional map is in general not statistically independent
from the monopole nor from the maps Cn. Therefore, this
construction still does not alleviate the issue.

To conclude, unless the monopole is an eigenmap of
the Fisher matrix, there is no good strategy to agnosti-
cally search for anisotropies within the standard Bayesian
setup. In Section VI, we explore a frequentist approach
to this problem.

VI. FREQUENTIST APPROACH TO
AGNOSTIC ANISOTROPY SEARCHES

In the previous sections we have highlighted the
di�culties in carrying a standard Bayesian search
for anisotropies of pre-determined shapes alongside a
monopole. Here we take a di↵erent approach, and derive
a criterion to assess the presence of anisotropies in the
data, regardless of their specific shape, without requiring
a basis of maps on which to decompose the GWB.

A. Derivation of the frequentist criterion

Given the data translated into an estimator bA for the
GWB amplitude, one may seek the monopole amplitude
that minimizes the �

2, given by

�
2(A0) =

⇣
A01 � bA

⌘
· F ·

⇣
A01 � bA

⌘
. (74)

The best-fit monopole amplitude is then simply

A
bf
0 =

1 · F · bA
1 · F · 1

. (75)

The SNR of the best-fit monopole is then SNRbf =
|A

bf
0 |

p
1 · F · 1. This quantifies how well the best-fit

monopole is detected relative to statistical noise. How-
ever, it does not quantify whether a pure monopole is a
good fit to the data or not.

To quantify the goodness of fit, one can examine the
�
2 at this best-fit value. After simplification, one obtains

�
2
bf ⌘ �

2
�
A

bf
0

�
= bA · F · bA �

(1 · F · bA)2

1 · F · 1

= bA · eF · bA, (76)

where we have defined the projected Fisher matrix

eF ⌘ F �
(F · 1) ⌦ (1 · F)

1 · F · 1
, (77)

which satisfies 1 · eF = eF · 1 = 0. This implies that any
monopole contribution to bA drops out of �

2
bf .

0.0 0.9 1.9 2.8 3.8
M (°≠̂) = A(°≠̂)/A2

h

Input Reconstructed

0.0 0.9 1.9 2.8 3.8
M (°≠̂) = A(°≠̂)/A2

h

<latexit sha1_base64="hAIQDR65UJguiuOjeX9SFsb1SM4=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEIXiyJVvQiVL14rGA/oI1hs922SzebsDsRSuzBv+LFgyJe/Rve/Ddu2xy09cHA470ZZuYFseAaHOfbmptfWFxazq3kV9fWNzbtre2ajhJFWZVGIlKNgGgmuGRV4CBYI1aMhIFg9aB/PfLrD0xpHsk7GMTMC0lX8g6nBIzk27uXfg9fnOAW8JBp7Dr36ZFbGvp2wSk6Y+BZ4makgDJUfPur1Y5oEjIJVBCtm64Tg5cSBZwKNsy3Es1iQvuky5qGSmK2een4/iE+MEobdyJlSgIeq78nUhJqPQgD0xkS6OlpbyT+5zUT6Jx7KZdxAkzSyaJOIjBEeBQGbnPFKIiBIYQqbm7FtEcUoWAiy5sQ3OmXZ0ntuOieFp3bUqF8lcWRQ3toHx0iF52hMrpBFVRFFD2iZ/SK3qwn68V6tz4mrXNWNrOD/sD6/AEBD5Qq</latexit>
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quadrupole components of the GWB. With this decom-
position, we obtain

� p̂p̂ · A =
4

3
A0 � 2

3X

i=1

p̂
i
A

i
1 +

3X

i,j=1

p̂
i
p̂
j
A

ij
2 . (38)

Thus, as noted in Paper I, the auto-correlated power
spectra constrain specific combinations of the GWB
monopole, dipole and quadrupole. Importantly, when al-
lowing for anisotropies, one must self-consistently prop-
agate their impact on the single-pulsar noises, i.e. one
must account for “common red processes” which arise
from the dipole and quadrupole pieces of the GWB, in
addition to its monopole. If autocorrelations are used
to set upper limits on a common red process, their de-
pendence on dipole and quadrupole GWB anisotropies
systematically degrades the inferred upper limits on the
monopole.

One of our main objectives here is to explore the abil-
ity of PTAs to detect the GWB. While autocorrelations
do contain information, they cannot be used to claim a
detection [43]. As a consequence we focus on the corre-
lations between di↵erent pulsars in the remainder of this
paper.

III. DATASET USED IN THIS PAPER

Throughout most of this paper, to provide a concrete
example, we will apply our formalism to the full EPTA
dataset described in the last data release [44]. The EPTA
is composed of the high-precision timing of 42 millisecond
pulsars for up to 17 years with an overlap of 21 pulsars
with the NANOGrav Nine-Year dataset [45]. We show
the locations of the EPTA pulsars relative to the Galactic
plane in Fig. 1.

Out of the 42 EPTA pulsars, six were determined to
contribute 90% of the SNR2 in simulated continuous GW
searches [33], and were used for searches of anisotropies in
the GWB in Ref. [32] (hereafter, TMG15). Specifically,
these six pulsars are J0613-0200, J1012+5307, J1600-
3053, J1713+0747, J1744-1134, and J1909-3744. Their
locations in the sky are shown in Fig. 1, and their char-
acteristic noise strains in Fig. 2. We will use this subset
of the EPTA in Section VII to compare our sensitivity
estimates to those of TMG15.

A. Evaluation of the characteristic noise strains

As described in the previous section, the primary quan-
tity characterizing pulsar noise properties is the charac-
teristic noise strain. Here, we explain how we estimate
the characteristic noise strains of all 42 EPTA pulsars.

We model the intrinsic white noise in the standard way:

[h�Rp(ti)�Rp(tj)i]white =
⇣
EFACp,b �

2
p,i

+EQUAD2
p,b

⌘
�ij , (39)

—J0613-0200

J1012+5307—

J1600-3053

—J1713+0747
J1744-1134

J1909-3744

FIG. 1. Locations of the EPTA pulsars, in equatorial coor-
dinates. We use the full EPTA dataset in Sections III-VI.
The subset of 6 highlighted pulsars is used when compare our
results to those of Ref. [32] in Section VII. The background
map is the Stockert and Villa-Elisa 1.4 GHz continuum map
[46, 47], which situates the positions of the pulsars relative to
the Galactic plane.

where ti is the i
th time-of-arrival of pulsar p, �p,i is the

uncertainty in the i
th timing residual of pulsar p, and the

white noise parameters, EFACp,b and EQUADp,b, are in-
cluded for each observing system b (i.e. di↵erent telescope
and/or backends). EFAC is dimensionless and EQUAD
has dimensions of time (we use units of seconds for our
analysis). Our priors on these parameters were a flat-
linear prior on EFAC 2 [0.01,10] and a flat-log prior on
EQUAD 2 [10�8.5

, 10�3] sec. The e↵ects of variations
in the dispersion measure (DM) and intrinsic red-noise
(RN) were modeled with a power-law spectral density of
the form

�
2
p,X(f) =

A
2
X

12⇡2
(f/fyr)

��X yr3, X = RN or DM, (40)

where ARN is independent of radio frequency ⌫ whereas
ADM / ⌫

�2. We use a flat-linear prior on the power-law
indices, �X 2 [0, 7] and a flat-log prior on the dimension-
less amplitudes AX 2 [10�20

, 10�11], for both RN and
DM. The prior on the power-law indices have been cho-
sen so that they range from white noise (�X = 0) to
the steepest power-law for which the fit to the timing
model removes any dependence on the functional form for
these spectral densities at low frequencies (f < 1/Tobs)
[48]. This range also covers the expected variation in the
power-law index due to random walks in phase, period
and period derivatives (which give �RN = 2, 4, 6, respec-
tively) [19]. Note that we do not include a “common red
noise” process in our analysis. This is consistent with
our weak-signal assumption, and allows us to fit for each
pulsar noise properties independently.

In order to extract values for these noise parameters
we used the Parallel Tempering Markov-Chain Monte
Carlo sampler PTMCMCSampler [49], the PTA software
Enterprise [50], and the TOA and timing model param-
eters used in the EPTA data release [51] from the EPTA
repository [52]. We set the noise parameters to equal
their median values from MCMC chains that contain 106

Alternative approach: examine the best-fit 
chi-squared, and ask whether it is consistent 

with pure monopole. Allows to assess 
presence of anisotropies in data, but not 

their specific shape (see paper). 



Conclusions — anisotropies
• Npair independent components is all you get, at most! 

• Searching for monopole + standard anisotropies 
systematically degrades the sensitivity to all amplitudes

• One can search for GWB anisotropies “under the 
lamppost” with principal maps. Requires a large signal 
with current PTAs. 

➡ Prospects for detecting unknown GWB anisotropies 
with current PTAs appear limited

• Future work: search for statistical anisotropies



Future extensions

• Include more realistic sources of correlated noise
— Global clock errors: fully correlated between different pulsars, 
independent of angle between pulsars: 

<latexit sha1_base64="KK1gUchImfSJyyi78jte93ra/Ws="></latexit>

hRclock
p (f)R⇤clock

q (f)i = Pclock(f)

— Ephemerides errors  
<latexit sha1_base64="03lTNf0rlkbFR2fMcodphG2XkSY=">AAACFHicbVBNS8NAEN34bf2qevSyWISKUBJR9CKIXjyq2Co0sWy2E7t0kyy7k0IJ/RFe/CtePCji1YM3/42b2oNaHww83pthZl6opDDoup/OxOTU9Mzs3HxpYXFpeaW8utYwaaY51HkqU30TMgNSJFBHgRJulAYWhxKuw+5p4V/3QBuRJlfYVxDE7C4RkeAMrdQq71y21G3u65iC6gyq0TY9on6HYa4G1OftFKnfA543CqtVrrg1dwg6TrwRqZARzlvlD7+d8iyGBLlkxjQ9V2GQM42CSxiU/MyAYrzL7qBpacJiMEE+fGpAt6zSplGqbSVIh+rPiZzFxvTj0HbGDDvmr1eI/3nNDKPDIBeJyhAS/r0oyiTFlBYJ0bbQwFH2LWFcC3sr5R2mGUebY8mG4P19eZw0dmvefs292Kscn4zimCMbZJNUiUcOyDE5I+ekTji5J4/kmbw4D86T8+q8fbdOOKOZdfILzvsX/Uedhg==</latexit>

Reph
p (f) = p̂ · ~V (f)

<latexit sha1_base64="T97ymzqdiXwFjhErS/hXjYd+hWw="></latexit>

hReph
p (f)R⇤eph

q (f)i = p̂ip̂jPeph
ij (f)

•  Beyond the weak-signal limit (weak anisotropy limit)?

•  In general, build a robust and efficient forecasting tool


