Insights into searches for the nanohertz gravitational-wave background with a Fisher analysis

Yacine Ali-Haïmoud (NYU)

based on arXiv:2006.14570, 2010.13958 with Tristan Smith and Chiara Mingarelli

King's College London seminar, May 19, 2021

Painting by H.J. Detouche

1965: Penzias & Wilson detect "excess emission" of 3 K, interpreted as the CMB by Dicke, Peebles, Roll & Wilkinson

1990: the CMB has a perfect blackbody spectrum with distortions < 1% (improved to < 0.01%, Mather et al. 1999)

FIG. 2.—Preliminary spectrum of the cosmic microwave background from the FIRAS instrument at the north Galactic pole, compared to a blackbody.

=> Stringent bounds on energy injection/extraction since a few months after the Big Bang

Planck polarization

Parameter	Plik[1]
$ \frac{\Omega_{\rm b}h^2}{\Omega_{\rm c}h^2} \dots \dots$	$\begin{array}{c} 0.02237 \pm 0.00015 \\ 0.1200 \pm 0.0012 \\ 1.04092 \pm 0.00031 \\ 0.0544 \pm 0.0073 \end{array}$
$\frac{\ln(10^{10}A_{\rm s})}{n_{\rm s}} \dots \dots$	3.044 ± 0.014 0.9649 ± 0.0042

Planck collaboration 2018

We are in the early days of gravitational-wave astronomy ... and cosmology!

The gravitational-wave landscape

Sources of nHz GWs

 \bigstar Inspiraling supermassive black hole binaries (SMBHBs).

Joint radiation of many <u>circular</u> SMBHBs leads to a **stochastic** GWB with characteristic strain

$$h_c(f) = A_{\rm GWB} \left(\frac{f}{{\rm yr}^{-1}}\right)^{-2/3}$$
$$A_{\rm GWB}^2 \propto M^{5/3} \frac{dN_{\rm remnants}}{dV} \qquad \text{Phinney 2001}$$

★``Primordial" GWs, either ``truly primordial", or sourced at second-order by scalar perturbations ($k \sim 1e6$ Mpc⁻¹).

★ "Exotica", e.g. cosmic strings

Status of PTAs

First step: set constraints on one single number, characteristic GW strain amplitude, assuming an isotropic stochastic GWB with specific frequency dependence

$$h_c(f) = h_c(1 \text{ yr}^{-1}) (f/\text{yr}^{-1})^{-\alpha}$$

• Frequency spectrum of the GWB ?

Looking ahead

• Anisotropies in GWB intensity?

Anisotropies are **expected** from the Poisson statistics of finite number of SMBHBs (Mingarelli et al. 2013)

Looking ahead

• Polarization of the stochastic GWB?

Looking ahead

=> What physics might we learn if and when we measure more properties of the GWB?

=> What can PTAs measure in the first place, and how well?

Why a Fisher formalism?

- Fisher formalism: ``theorist's reduction of the data analysis process".
- A detection of the gravitational-wave background can only be achieved with pulsar cross-correlations
- •NANOGrav 12.5 year uses 45 pulsars, i.e. 990 pairs
- •SKA promises hundreds of new millisecond pulsars, i.e. tens of thousands of pairs
- ➡ We need simple but robust tools to be able to make **forecasts** without running MCMCs, and to **guide** and **optimize** full-blown data analyses

Analogies and differences betweenEMWsandGWs

 Astrophysical sources always made of large numbers of incoherent microscopic emitters
 => Astrophysical EMWs are *always stochastic* (even "point sources")

direction of propagation >

$$\hat{\Omega}_i E_i(f, \hat{\Omega}) = 0$$

=> 2 independent components

- Can detect deterministic GWs from single "microscopic" sources, e.g. a single binary.
 - Superposition of many sources can lead to a **stochastic** GWB.
 - => focus of this work

$$\hat{\Omega}_i h_{ij}(f, \hat{\Omega}) = 0$$

 h_{ij} symmetric, trace-free

=> 2 independent components

Analogies and differences between **EMWs** and GWs $\langle h_{ab}(f,\hat{\Omega})h_{cd}^*(f,\hat{\Omega})\rangle$ $\langle E_i(f,\hat{\Omega})E_i^*(f,\hat{\Omega})\rangle$ $= \mathcal{I}(f, \hat{\Omega}) \mathfrak{I}_{abcd}(\hat{\Omega})$ $= I(f, \hat{\Omega}) \left(\delta_{ij} - \hat{\Omega}_i \hat{\Omega}_j \right)$ $+ \mathcal{V}(f, \hat{\Omega})\mathfrak{V}_{abcd}(\hat{\Omega})$ $+ V(f, \hat{\Omega}) \epsilon_{ijk} \hat{\Omega}_k$ $+ \mathcal{L}_{abcd}(f, \hat{\Omega})$ $+L_{ij}(f,\hat{\Omega})$ symmetric and trace-free symmetric and trace-free in all pairs 2 independent linear 2 independent linear polarizations polarizations

Pulsar timing basics

For each pulsar *p*:

Time residual $R_p(t) = \text{TOA} - \text{timing model}(t)$

Real-life example: J1012+5307 (NANOGrav 12.5-yr data)

Main sources of timing residuals

• Intrinsic pulsar noise.

$$\langle R_p^{\rm int}(f) R_q^{*\rm int}(f) \rangle = \sigma_p^2(f) \ \delta_{pq}$$

uncorrelated between different pulsars

• GW-induced timing residuals

$$R_p^{\text{GW}}(f) = \frac{\hat{p}^a \hat{p}^b}{4\pi i f} \int d^2 \hat{\Omega} \ \frac{h_{ab}(f, \hat{\Omega})}{(1 + \hat{\Omega} \cdot \hat{p})}$$

 $\hat{\Omega}$ = direction of GW propagation

Correlation of GW-induced residuals

$$\langle R_p^{\text{GW}}(f) R_q^{*\text{GW}}(f) \rangle = \mathcal{R}_{pq}^{\text{GW}}(f)$$

$$\mathcal{R}_{pq}^{\text{GW}}(f) = \frac{1}{(4\pi f)^2} \int \frac{d^2 \hat{\Omega}}{4\pi} \gamma_{\hat{p}\hat{q}}(\hat{\Omega}) \mathcal{I}(f, \hat{\Omega})$$

$$\gamma_{pq}(\hat{\Omega}) \equiv 2 \frac{\left(\hat{p} \cdot \hat{q} - (\hat{p} \cdot \hat{\Omega})(\hat{q} \cdot \hat{\Omega})\right)^2}{(1 + \hat{p} \cdot \hat{\Omega})(1 + \hat{q} \cdot \hat{\Omega})} - (1 - \hat{p} \cdot \hat{\Omega})(1 - \hat{q} \cdot \hat{\Omega})$$

pairwise timing response function

$$\mathcal{R}_{pq}^{\mathrm{GW}}(f) = rac{\boldsymbol{\gamma}_{\hat{p}\hat{q}} \cdot \boldsymbol{\mathcal{I}}(f)}{(4\pi f)^2}$$

$$\boldsymbol{M}_1 \cdot \boldsymbol{M}_2 \equiv \int \frac{d^2 \hat{\Omega}}{4\pi} M_1(\hat{\Omega}) M_2(\hat{\Omega})$$

For an *isotropic* GWB:

 $\mathcal{I}(f,\hat{\Omega}) = \mathcal{I}(f)$

 $\mathcal{R}_{pq}^{\text{GW}}(f) = \frac{\mathcal{I}(f)}{(4\pi f)^2} \int \frac{d^2 \hat{\Omega}}{4\pi} \gamma_{\hat{p}\hat{q}}(\hat{\Omega})$ $\mathcal{H}(\hat{p}\cdot\hat{q})$ Hellings & owns curve

Constructing the Fisher "matrix"

• Construct quadratic estimators for timing residual crosspower spectra, for each pair $(p, q), p \neq q$

$$\widehat{\mathcal{R}}_{pq}(f) \qquad \quad [\leftrightarrow \widehat{C}_{\ell} = \frac{1}{2\ell+1} \sum_{m} |a_{\ell m}|^2 \text{ for CMB}]$$

• Approximate distribution of estimators as Gaussian. Compute covariance in weak-signal limit.

Translates to a Gaussian likelihood for GWB intensity, given timing residual data.

Constructing the Fisher "matrix"

Effective noise strain for each pulsar:

Constructing the Fisher "matrix"

Special case: factorized frequency and angular dependence.

$$\mathcal{I}(f,\hat{\Omega}) = \mathcal{A}(\hat{\Omega}) \left(f/\mathrm{yr}^{-1} \right)^{-2\alpha}$$

Consider an idealized PTA with $N_{psr} >> 1$ identical pulsars distributed isotropically on the sky

$$\mathcal{F}(\hat{\Omega}, \hat{\Omega}') \propto F(\hat{\Omega}, \hat{\Omega}') \equiv \frac{1}{N_{\text{pair}}} \sum_{p \neq q} \gamma_{\hat{p}\hat{q}}(\hat{\Omega}) \gamma_{\hat{p}\hat{q}}(\hat{\Omega}')$$

$$\boldsymbol{F}(\hat{\Omega}, \hat{\Omega}') \xrightarrow[N_{\mathrm{psr}} \to \infty]{} \mathcal{F}_{\infty}(\hat{\Omega} \cdot \hat{\Omega}')$$

$$\mathcal{F}_{\infty}(\chi) = \frac{16}{9(1+\chi)^2} \left[\left(\frac{1-\chi^2}{4} + 2 - \chi + 3\frac{1-\chi}{1+\chi}\log\frac{1-\chi}{2} \right)^2 + \left(2 - \chi + 3\frac{1-\chi}{1+\chi}\log\frac{1-\chi}{2} \right)^2 \right]$$

$$\mathcal{F}_{\infty}(\hat{\Omega} \cdot \hat{\Omega}') = \sum_{\ell} (2\ell+1) \mathcal{F}_{\ell} P_{\ell}(\hat{\Omega} \cdot \hat{\Omega}') = 4\pi \sum_{\ell,m} \mathcal{F}_{\ell} \mathcal{Y}_{\ell m}(\hat{\Omega}) \mathcal{Y}_{\ell m}(\hat{\Omega}')$$

=> The spherical harmonics are the eigenmaps of the idealized PTA Fisher matrix for $N_{psr} \rightarrow \infty$

Application to the EPTA

42 pulsars, timed for up to 17 years

Application to the EPTA

Characteristic noise strains obtained by analyzing residuals of each pulsar separately (no cross-correlation required)

Warmup: monopole sensitivity

Signal-to-noise ratio of a given GWB amplitude:

$$\mathrm{SNR}^2 = \mathcal{A} \cdot \mathcal{F} \cdot \mathcal{A} = \sum_{p \neq q} \mathcal{F}_{pq} \left[\gamma_{\hat{p}\hat{q}} \cdot \mathcal{A} \right]^2$$

Apply to a pure monopole: $\mathcal{A}(\hat{\Omega}) = A_{\mathrm{GWB}}^2$

$$\gamma_{\hat{p}\hat{q}} \cdot \mathcal{A} = A_{\text{GWB}}^2 \mathcal{H}(\hat{p} \cdot \hat{q})$$
 Hellings & Downs curve

$$SNR^{2} = A_{GWB}^{4} \sum_{p \neq q} \mathcal{F}_{pq} \left[\mathcal{H}(\hat{p} \cdot \hat{q}) \right]^{2}$$

 \Rightarrow sensitivity: $A_{\rm GWB}^{95\%}$ such that ${\rm SNR}=2$

Application to 6 EPTA pulsars

Were found to be the best pulsars for **continuous wave searches**

- We find a 2- σ sensitivity $A_{\rm GWB}^{95\%} \approx 3.4 \times 10^{-15}$
- Compare with EPTA collaboration 95% upper limits of 3.0e-15 (Lentati et al. 2015) and 3.9e-15 (Taylor et al. 2015)
- With full EPTA array we estimate 95% sensitivity of 2.5e-15

Best pulsar pairs for monopole searches

The 44 best pairs (out of 861) provide 90% of SNR²

Beyond the monopole

=> Can at most observe/ constrain N_{pair} independent components of the GWB angular dependence

Searching for anisotropies of known shape

Suppose we have good physical reasons to expect

$$\mathcal{A}(\hat{\Omega}) = \sum_{n=1}^{N_{\text{maps}}} \mathcal{A}_n M_n(\hat{\Omega}) \xrightarrow{\text{known}} \text{basis maps}$$

1

We want to estimate the sensitivity to the \mathcal{A}_n

$$\begin{array}{l} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Example 1: GWB amplitudes in coarse pixels

Sensitivity to the monopole (i.e. average GWB amplitude):

- 1 single pixel (i.e. pure monopole): $A_h^{95\%} = 2.5 \times 10^{-15}$
- 12 pixels:
- 192 pixels:

 $A_h^{95\%} = 5.0 \times 10^{-15}$ $A_h^{95\%} = 7.8 \times 10^{-15}$

Example 2: spherical harmonic amplitudes

Searching for anisotropies of known shape

Issue: sensitivity to each coefficient (including monopole), systematically degrades when including more basis maps.

In other words, with standard basis maps, forecasts are dependent on assumed cutoff.

Reason: standard basis maps are statistically correlated.

One needs to have robust priors on the basis maps present in the data to make meaningful forecasts.

Agnostic searches for anisotropies

Taylor et al 2015: derive $N_{pix} = 12288$ "upper limit map" using 6 EPTA pulsars, i.e. 15 pairs

1.6 2.4 3.2 4.0 4.8 5.6 6.4
$$A_h^{95\%\,\mathrm{ul}}(-\hat{\Omega}) \, [\times 10^{-14}]$$

This map represent constraints on the observable component only

These are **not upper limits** on the GWB in each pixel

Our ``forecast" for this map

Equivalent map with 1 pair only. The observable space is smaller (1dimensional), better "constraints"

These are **not upper limits** on the GWB in each pixel

Agnostic searches for anisotropies

- "**Principal maps**" = eigenmaps of the Fisher matrix
- \rightarrow N_{pair} statistically independent GWB maps spanning the space of observable maps
- ➡ Can search of the amplitudes of all principal maps simultaneously without increasing the noise of each one.

→ Allow to search under the PTA lampost

Issue: have to give up the monopole as a "preferred map"

"Reconstructing" the (observable part of the) GWB

- Search for amplitudes $\widehat{\mathcal{A}}_n$ of all principal maps
- Define the reconstructed map as

$$\mathcal{A}_{\mathrm{recon}} \equiv \sum_{n;\mathrm{SNR}_n>3} \widehat{\mathcal{A}}_n \ \mathcal{M}_n$$

- Similar to making a "dirty map" in radio interferometry: keep only the measured pieces of information and set the non-measured ones to zero.
- Note: the reconstructed map still formally has "infinite error bars" due to unobservable component...

Input

Reconstructed

Input

Reconstructed

Input

Reconstructed

Alternative approach: examine the best-fit chi-squared, and ask whether it is consistent with pure monopole. Allows to assess presence of anisotropies in data, but not their specific shape (see paper).

Conclusions — anisotropies

- N_{pair} independent components is all you get, at most!
- Searching for monopole + standard anisotropies systematically degrades the sensitivity to all amplitudes
- One can search for GWB anisotropies "under the lamppost" with principal maps. Requires a large signal with current PTAs.
- Prospects for detecting unknown GWB anisotropies with current PTAs appear limited
- Future work: search for statistical anisotropies

Future extensions

• Include more realistic sources of correlated noise

— Global clock errors: fully correlated between different pulsars, independent of angle between pulsars:

$$\begin{split} \langle R_p^{\text{clock}}(f) R_q^{\text{*clock}}(f) \rangle &= \mathcal{P}^{\text{clock}}(f) \\ \bullet \text{ Ephemerides errors } & R_p^{\text{eph}}(f) = \hat{p} \cdot \vec{V}(f) \\ \langle R_p^{\text{eph}}(f) R_q^{\text{*eph}}(f) \rangle &= \hat{p}^i \hat{p}^j \mathcal{P}_{ij}^{\text{eph}}(f) \end{split}$$

- Beyond the weak-signal limit (weak anisotropy limit)?
- In general, build a robust and efficient forecasting tool