

Precision in neutrino physics

NExT Workshop

29 April 2020

The Hyper-K Detector

Inner detector (ID):

* 216 kton

Outer detector (OD):

- * 1-2m thick round the edge
- * veto region (incoming/outgoing particles)

Height = 71m, Diameter = 68m Volume: 258kton

PMT Photosensors

50cm PMTs

- 2.6 ns timing resolution
 Inner detector (ID)
 Up to 40,000 * 50cm PMTs
 → up to 40% coverage

8cm PMTs

Outer detector (OD) 13,300 * 8cm PMTs

Multi-PMTs (mPMTs)

- 19 x 8cm PMTs inside single pressure vessel
- directional information and improved timing and spatial resolutions Inner detector (ID)

Considering adding up to 10,000 mPMTs to ID

Hyper-Kamiokande

The Kamiokande Series

- * Proton decay
- * Solar, supernova and atmospheric neutrinos
- * Accelerator beam neutrinos

Hyper-Kamiokande

Hyper-Kamiokande Physics

- * Neutrino Oscillations
 - beam, atmospheric, solar neutrinos
 - BSM (sterile searches, non-standard interactions etc.)
- * Astrophysics
 - solar neutrinos, supernova neutrinos
 - dark matter, gravitational-wave sources
 - gamma-ray sources
- * Nuclear physics
 - neutrino interactions
- * Geophysics
 - matter effect on oscillations
 - electron density of Earths outer core

Proton Decay

HK can improve the SK limit on this process from 10³⁴ to 10³⁵ years

/β [years] DUNE 40 kton, staged, 3o SK 22.5 kton , 3σ 10³⁶ HK 372 kton HD staged , 3σ HK 186 kton HD , 3σ 10³⁵ 10³⁴ 10³³ 15 10 20 5 Years

Can also constrain

 $p \ \rightarrow \ K^{+} \ \nu$

- due to atmospheric neutrino background

Neutrino Oscillations

Neutrino Oscillations

 $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*} |\nu_{i}\rangle$

Flavour eigenstate:	Interact
Mass eigenstate:	Propagate

- Neutrino oscillation
- $\rightarrow\,$ mass states do not align with flavour states $\rightarrow\,$ non-zero masses

Oscillations governed by PMNS flavour-mass mixing matrix, U

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$

Atmospheric and accelerator $\theta_{13} \sim 8^{\circ}$ Reactor and accelerator $\theta_{13} \sim 8^{\circ}$ Accelerator only $\delta_{CP} = ??$ Solar and reactor $\theta_{12} \sim 34^{\circ}$ $\Delta m_{12}^{2} \sim 7.5 \times 10^{-5} \text{ eV}^{2}$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2}\left(\Delta m_{ij}^{2}\frac{L}{4E}\right) + 2\sum_{i>j} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}) \sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$$

- → Amplitude of oscillation: mixing angles and phase
- → Distance of oscillation: squared mass differences and Energy

Neutrino Oscillation Questions

1) Mass Odering (NO or IO)

Normal Ordering (NH) Inverted Ordering (IH)

- Do not know the ordering of the m
- Is $m_{_3}$ smaller/bigger than $m_{_1}$ and $m_{_2}$?

2) CP violation ($\delta_{cp} \neq 0, \pm \pi$)

 $\begin{array}{l} \theta_{13} \text{ precisely measured and not too small} \\ \rightarrow \text{ opens the door for } \delta_{cp} \text{ measurements} \\ \delta_{cp} = 0, \pm \pi \rightarrow \text{ CP conserved: } P(\nu_{\mu} \rightarrow \nu_{e}) = P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \\ \delta_{cp} \neq 0, \pm \pi \rightarrow \text{ CP violated: } P(\nu_{\mu} \rightarrow \nu_{e}) \not \equiv P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \\ \end{array}$ Compare oscillation of ν and $\overline{\nu}$ to probe δ_{cp}

3) θ_{23} octant:

 $\theta_{23} > \pi/4$

or

 $\theta_{23} < \pi/4$

Matter effects! (electrons) → difference between v_e and \overline{v}_e as they travel through the earth (similar effect as δ_{cp}) → allows for mass hierarchy determination

Solar Neutrinos

-> Potential areas for new physics

Supernova Neutrinos

Supernova Neutrinos

Hyper-Kamiokande

Fluxes and energy spectra are from the Livermore simulation

Supernova Neutrinos

Inverse beta decay dominates

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

Different models predict different electron antineutrino rates

 \rightarrow Hyper-K can constrain different models

 $\rightarrow\,$ Stat error is much smaller than the difference between models

Predicted inverse beta decay rates

Beam neutrinos Long-base neutrino oscillations

$v_{\mu} (\overline{v}_{\mu})$ disappearance

Probability minimum causes a dip in the number of v_{μ} observed at SK

Depth of dip – $sin^{2}(\theta_{23})$ Energy of dip – $|\Delta m^{2}_{32}|$ ($|\Delta m^{2}_{13}|$)

Hard to distinguish mass ordering

The T2K Experiment

- * Long-baseline neutrino oscillation experiment
- * High intensity neutrino beam, predominantly v_{μ} (\overline{v}_{μ})
- * Near detectors constrain uncertainty on flux and neutrino interaction models
 - $\rightarrow\,$ reduces the error on SK results

Hyper-Kamiokande long-baseline

- * Upgrade T2K beam
- * Upgrade ND280
- * New intermediate water Cherenkov detector
- * Hyper-K far detector

Intermediate water Cherenkov detector (IWCD) * Constrain flux and neutrino interactions


```
Distance: 0.75 – 2km
Inner detector: Diameter = 8m, height = 6m
Outer detector: 1m wide all around
```

Gadolinium doping: 0.1% Gd → Neutron tagging

Hyper-Kamiokande

Size optimised to contain 1GeV muons, while minimizing beam pile up events

Vertical pit: $\sim 50 - 100$ m, detector moves up and down

- \rightarrow samples flux at different angles
 - \rightarrow sample flux with different energy peaks/profiles

Multi-PMTs

- * better timing and spatial resolution
 - \rightarrow good reconstruction despite small detector

Intermediate water Cherenkov detector

Hyper-Kamiokande long-baseline

Assumes Normal Hierarchy, beam $v : \overline{v} = 1 : 3$

Antineutrino mode: appearance

Neutrino mode: appearance

Predicted HK far detector event yields for 10 years of operation

For different values of deltaCP

 $v: \overline{v} = 1:3$

Run mode chosen to optimise deltaCP sensitivity

Hyper-Kamiokande long-baseline **Hyper-Kamiokande** 100.3MW beam 10 Fraction of Normal mass hierarchy (%) 90E HK 1tank 10vears $1year = 10^{7}s$ sin²20₁₃=0.1 σ=Vχ² sin² 0₂₃=0.5 δ for Ю 70 cp Fraction of 60Ē which 50 $\delta = 0$ 5σ 40 ср 30 can be 4 3σ 3σ 20 5σ excluded 2 60 1.3MW beam Error of δ (degree) -150 -100 -50 50 150 100 $\begin{array}{l} \delta_{CP} = 90^{\circ} \\ \delta_{CP} = 0^{\circ} \end{array}$ 50-1 year = 10^7 s δ_{CP} [degree] Significance to exclude dCP = 0(i.e. exclude CP conservation) Note: These plots assume that the 10 2 6 0 8 Running time (year) mass ordering is NO and known

Hyper-Kamiokande long-baseline **Hyper-Kamiokande 1% (72% 5**\sigma, **84% 3**\sigma) **2% (67% 5**\sigma, 81% 3\sigma) 3% (59% 5o, 77% 3o) 1% anti (70% 5ơ, 83% 3ơ) 2% anti (61% 50, 78% 30) C D 3% anti (48% 50, 71% 30) o to determine 3 2 True δ_{cp}

Minimizing systematics errors is very important!

 \rightarrow Near/intermediate detectors play a vital role in constraining the errors

Atmospheric neutrinos (+ beam)

Sensitivity to mass ordering

Atmospheric neutrinos sensitive to matter effects as they travel through the Earth

 \rightarrow Sensitive to mass ordering

Combined fit of atmospheric data + beam data Gives the best sensitivity to mass ordering

Note: atmospheric is also sensitive to theta23 octant

(and limited sensitivity to deltaCP)

Summary

Summary

The Hyper-Kamiokande is a next-generation neutrino experiment

- * Builds on the expertise and knowledge gained from Super-K
- * Bigger and better than SK
 - Fiducial volume 8 times larger than SK
 - Improved photosensors
 - beam upgrade to 1.3 MV
 - New intermediate water Cherenkov detector and upgraded near detectors

Wide range of physics

- * CP violation in the lepton sector
- * Nucleon decays
- * Astrophysics
- * Potential to discover new physics in many areas

BACKUP

Backup – Hyper-K

36

Proton decay

p → K⁺ν

Harder to identify

- * atmospheric neutrino background
- * K+ is below the Cherenkov threshold in water
 - \rightarrow detect mu when it decays
 - → detect gamma from transition $16 \text{ O} \rightarrow 15 \text{ N}^*$

Proton decay

Solar Neutrinos

'Upturn': increase in the solar neutrino survival probability at low energy \rightarrow matter effect dominate

Supernova Relic Neutrinos

Predicted flux for different models

* Small flux

* Large backgrounds

 \rightarrow No evidence of supernova relic neutrinos at SK yet

Predicted event numbers

Dashed line for case where 30% form black hole and emit higher energy neutrinos

IWCD: nue cross-section measurement

 $\nu_{e}^{}$ selection in the IWCD

IWCD OD helps to reduce the photon background

Total error <4% at the relevant momenta for HK

 \rightarrow expect further improvements due to reductions in flux and xs errors

Hyper-Kamiokande

Supernova Neutrinos

M31 (Andromeda 6898 Galaxy)

 \sim 10 to 16 events expected at Hyper-K.

Large Magellanic Cloud (where SN1987A was located)

 \sim 2,200 to 3,600 events expected at Hyper-K

Betelgeuse (200pc) ~ 117.5 million – 180 million

Supernova Neutrinos

- * Blackhole formation can be observed as a sharp drop in neutrino flux
- * Hyper-K can confirm/refute models relating to the dynamics of the explosion
- (Standing Accretion Shock Instability)
- * Supernova flux is sensitive to mass ordering without too much model dependence
- \rightarrow neutronization burst

Supernova Neutrinos

These supernova events will be detected via the following interactions in Super-K, where the numbers in parentheses show the fractions of the total number of events with/without neutrino oscillations:

$$\overline{\nu}_e + p \to n + e^+ \quad (88\%/89\%), \tag{1}$$

$$\nu_e + e^- \to \nu_e + e^-$$
 (1.5%/1.5%), (2)

$$\overline{\nu}_e + e^- \to \overline{\nu}_e + e^- \quad (<1\%/<1\%),$$
 (3)

$$\nu_x + e^- \to \nu_x + e^- \quad (1\%/1\%),$$
 (4)

$$\nu_e + {}^{16}\text{O} \to e^- + {}^{16}\text{F} \quad (2.5\%/<1\%),$$
 (5)

$$\overline{\nu}_e + {}^{16}\text{O} \to e^+ + {}^{16}\text{N} \quad (1.5\%/1\%),$$
 (6)

$$\nu_x + {}^{16}\text{O} \to \nu_x + {}^{0}\text{O}^*/{}^{N^*} + \gamma \quad (5\%/6\%),$$
 (7)

CP sensitivity

Assuming the mass hierarchy is NOT known

https://arxiv.org/pdf/1612.07275.pdf

Note: HK sensitivity will improve if combined with HK atmospheric data!

Note: **higher** values are better (better sensitivity) 45

The Kamiokande Series

Hyper-K: Height h = 71m, diameter d = 68mHyper-Kamiokande Volume V = 258 kton, Fiducial Volume FV >= 187 kton Super-Super-K: h = 41.4m, d = 39.1m Kamiokande V = 50kton, FV: 22.5 kton Kamiokande 258 kton **KamiokaNDE** NAME AND A h = 16 md = 15.6 m50 kton V = 3 kton FV = 0.68 kton3 kton

Neutrino beam

- * **30GeV protons** \rightarrow **graphite** target \rightarrow charged **hadrons**
- * charge selection and focusing of hadrons with 3 electromagnetic horns
- * hadrons decay to $v \text{ or } \overline{v}$ (depending on charge of hadron)

Dominant systematic error due to hadron interaction modelling

- → Constrained using NA61/SHINE replica target measurements
- \rightarrow In future flux uncertainty will be reduced by the EMPHATIC experiment

T2K/HK Beam upgrade

* Beam currently capable of 450-500kW stable running

- * Beam line upgrade in 2021
 - Nd280 upgrade will
- happen at the same time

* target power: 1.3MW

T2HK: Tokai to Hyper-K


```
Beam power: 1.3 \text{ MV} \times 10^8 \text{ s}
```

```
Beam mode: v:\overline{v} = 1:3
```

```
First 10 years of operation
Expected protons on target: 2.7x20<sup>22</sup> POT
```

The Hyper-K Experiment

Politics:

The supplementary budget for FY2019 which includes the first-year construction budget of 3.5 billion yen for the Hyper-Kamiokande project was approved by the Japanese Diet.

The Hyper-K project has officially started.

The operations will begin in 2027.

Interactions occur with nucleons bound inside a nucleus

→ Nuclear effects!!

We only measure particles that exit the nucleus \rightarrow lose information about the initial interaction

 \rightarrow can create a bias in energy reconstruction

Neutrino interactions

Extra nuclear effects

Interactions occur with nucleons bound inside a nucleus

→ Nuclear effects!!

We only measure particles that exit the nucleus $\ \ \rightarrow$ lose information about the initial interaction

 \rightarrow can create a bias in energy reconstruction

Backup – T2K

ND280 upgrade (2021)

Pi0 detector is being replaced by * SuperFGD

- higher granularity, 3D readout
- * Horizontal TPCs (HTPCs)
- * Time of Flight (ToF) planes
- \rightarrow increases active target **mass** for oscillation analysis
- → improved angular acceptance
- \rightarrow able to reconstruct low energy short tracks
 - \rightarrow improved hadronic information
 - \rightarrow better y \rightarrow e⁺ e⁻ identification

Reduce systematic uncertainty to 4%

 $\rightarrow 3\sigma$ exclusion of CP conservation for 36% of the $\delta_{_{CD}}$ phase space (if mass hierarchy is known)

ND280 upgrade

Constraints provided to SK

Current ND280 constraint compared to predicted ND280 upgrade constraint

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_v < 0.7 \text{ GeV})$		
MA_{QE} (GeV/c ²)	2.6	1.8
v_{μ} 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
MA_{RES} (GeV/c ²)	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

Note: preliminary estimation

Near Detectors 280m from the v (\bar{v}) source

ND280

Same off-axis angle as SK

- Active target mass \rightarrow 2 x scintilltors (FGDs)
 - \rightarrow vertex reconstruction
- 3 Time projection chambers (TPC)
 - → **momentum** reconstruction
 - \rightarrow **charge** identification
 - → Particle identification (PID)
- Electromagnetic calorimeters (Ecal) → PID
- π^0 detector and side muon range detector

Near Detectors 280m from the v (\overline{v}) source

INGRID

- On-axis, scintillator and iron
- monitors beam direction, intensity and stability

T2K Protons on target (POT)

Reconstructed muon momentum (MeV/c)

SK event selection errors (%)

	Pre-fit	Post-fit
v-beam 1-Ring-µ	15	5
$\bar{\nu}$ -beam 1-Ring-µ	13	4
v-beam 1-Ring-e	17	9
$\bar{\nu}$ -beam 1-Ring-e	14	7
v-beam 1-Ring-e + $1\pi^+$	22	18

Oscillation parameter fits

T2K Run 1-9 Preliminary

Joint fit between v-beam and \overline{v} -beam data across 5 event samples at SK Near detector constraints are applied

 δ_{cp} sensitivity

Joint fit between v-beam and \overline{v} -beam data across 5 event samples at SK Near detector constraints are applied

2 sigma C.L. exclusion region T2K Run 1-9 Preliminary 35 -Normal 30 - Inverted 25 $2\Delta \ln(L)$ 20 15 10 -2-1 δ_{CP}

Best fit values:

NH: -1.89 IH: -1.38

CP conservation excluded at 2σ level for both mass hierarchy

Normal hierarchy preferred for all parameter fits to data

The Beam

Major neutrino-producing decay modes in the decay volume:

For a neutrino beam

 $\pi^{*} \rightarrow \mu^{*} + \nu_{\mu}$ $K^+ \rightarrow \mu^+ + \nu_{\mu}$ $K^{+} \rightarrow \pi^{0} + \mu^{+} + \nu_{\mu}$ $K^0 \rightarrow \pi^- + \mu^+ + \nu_{\mu}$ $\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$ $K^{*} \rightarrow \pi^{0} + e^{*} + \nu_{e}$ $\pi^{+} \rightarrow e^{+} + \nu_{e}$ $K^{0} \rightarrow \pi^{-} + \mu^{+} + \nu_{\mu}$ $\mu^{+} \rightarrow e^{+} + \nu_{e} + \nu_{\mu}$

SK particle identification

Beam Flux

T2K Oscillation fit priors (VALOR framework)

Taken from

* T2K 2015 best fit results (most probable, Bayesian fit including reactor) T2K 2015: Phys. Rev. D 91, 072010 (2015)

* 2016 PDG

C. Patrignani et al (Particle Data Group). Chin. Phys. C, 2016, 40(10): 100001

of i alignation of al (i aligne bata of sap).	erini i nye. e	, 2010, 10(10). 100001	
Parameter(s)	Prior	Range	
$\sin^2 \theta_{23}$	uniform	[0.3; 0.7]	→ T2K 2015
$\sin^2 2\theta_{13}$ reactors	gaussian	0.0830 ± 0.0031	→ PDG
$\sin^2 2\theta_{13}$ T2K only	uniform	[0.03; 0.2]	→ T2K 2015
$\sin^2 2\theta_{12}$	gaussian	0.851 ± 0.020	→ PDG
$ \Delta m_{32}^2 $ (NH) / $ \Delta m_{13}^2 $ (IH)	uniform	$[2.3; 2.7] \times 10^{-3} \text{ eV}^2/\text{c}^4$	→ T2K 2015
Δm_{21}^2	gaussian	$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$	→ PDG
δ_{CP}	uniform	$[-\pi;+\pi]$	
Mass Hierarchy	fixed	NH or IH	

²(2A)

Two options for prior

- reactor constraint
- uniform prior

Systematic errors

Systematic errors on the event rate for each sample at SK Final column is error on the ratio of FHC/RHC of 1-ring e sample (important for $\delta_{_{CP}}$)

Systematics grouped by type/source

					Error (%)	
	1-Ri	$ng \mu$			1-Ring $e^{\prime\prime}$	/
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
SK FSI+SI+PN	2.21	1.98	3.00	2.31	11.43	1.57
Flux + Xsec constrained	3.27	2.94	3.24	3.10	4.09	2.67
E _b	2.38	1.72	7.13	3.66	2.95	3.62
$\sigma(u_e)/\sigma(ar u_e)$	0.00	0.00	2.63	1.46	2.61	3.03
$NC1\gamma$	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc	0.03	0.03	2.69	2.49	2.63	0.77
All Systematics	5.12	4.45	8.81	7.13	18.38	5.96
All with osc	5.12	4.45	9.19	7.57	18.51	6.03

Table 5: Percentage error on event rate by error source and sample. Final column is the percentage error on the ratio of FHC/RHC events in the one-ring e sample.

T2K θ_{13} sensitivty

1D contours

- mass hierarchy is minimized
- normal and inverted hierarchy $\Delta\chi 2$ distributions shifted to the same global best-fit $\chi 2$ value
- global best fit value taken to be the minimum between normal and inverted hierarchy.

PDG / reactor constraint shown in green/yellow

1D contours

- mass hierarchy is minimized
- normal and inverted hierarchy $\Delta \chi 2$ distributions shifted to the same global best-fit $\chi 2$ value
- global best fit value taken to be the minimum between normal and inverted hierarchy.

1D contours

- mass hierarchy is minimized
- normal and inverted hierarchy $\Delta \chi 2$ distributions shifted to the same global best-fit $\chi 2$ value
- global best fit value taken to be the minimum between normal and inverted hierarchy.
T2K II: SK upgrade

- * SK repairs performed in 2018
 - detector drained and cleaned
 - reinforcement of water sealing
 - improved tank piping
 - PMTs replaced
- * Plan to add Gadolinium to the water
 - 0.01% next year
 - increase to 0.1% eventually $\overline{\mathbf{V}_{\mathbf{e}}}$
- \rightarrow Better v / \overline{v} separation

Backup – Neutrinos

Neutrino Oscillations Parameters

arXiv:1906.04907

Nova June 2019