Health-check of supersymmetric E(6) models into the new decade

Yaşar Hiçyılmaz

University of Southampton and NExT Institute (TUBITAK Research Fellow)
Balıkesir University

Talk based on M. Frank, Y. Hiçyılmaz, S. Moretti and Ö. Özdal

NExT Institute Spring Workshop 2020
KCL, UK
29 April, 2020
Outline

1. Introduction
 - Supersymmetry
 - Cons of MSSM

2. E_6 Motivated UMSSM
 - Model
 - Scanning Procedure and Experimental Constraints

3. Results

4. Conclusion
Supersymmetry (SUSY) is one of the most studied NP theories at LHC, since it has remarkable advantages.
Supersymmetry (SUSY) is one of the most studied NP theories at LHC, since it has remarkable advantages.

- The Hierarchy Problem.
- Natural light Higgs boson.
- Unification of the gauge couplings.
- WIMP candidate in order to solve the DM puzzle.
Supersymmetry (SUSY) is one of the most studied NP theories at LHC, since it has remarkable advantages.

- The Hierarchy Problem.
- Natural light Higgs boson.
- Unification of the gauge couplings.
- WIMP candidate in order to solve the DM puzzle.

Minimal Supersymmetric Standard Model (MSSM) is the simplest SUSY extension of the SM.

\[W_{\text{MSSM}} = \mu H_u H_d + Y_u \hat{Q} H_u \hat{U} + Y_d \hat{Q} H_d \hat{D} + Y_e \hat{L} H_d \hat{E} \]
Little Hierarchy Problem!!!

\[(m_h^{\text{pole}})^2 \approx m_Z^2 \cos^2 2\beta + \Delta m_h^2\]

- \[m_h^{\text{pole}} \approx 125\text{GeV}\]
- \[m_Z \approx 91\text{GeV}\]
- \[\Delta m_h \gtrsim 87\text{GeV}\]
Little Hierarchy Problem!!!

\[(m_{h}^{\text{pole}})^2 \approx m_Z^2 \cos^2 2\beta + \Delta m_h^2\]

\[m_{h}^{\text{pole}} \approx 125 \text{GeV}\]

\[m_Z \approx 91 \text{GeV}\]

\[\Delta m_h \gtrsim 87 \text{GeV}\]
Little Hierarchy Problem!!!

\[(m_{h}^{\text{pole}})^2 \approx m_{Z}^2 \cos^2 2\beta + \Delta m_{h}^2\]

\[m_{h}^{\text{pole}} \approx 125 \text{GeV}\]

\[m_{Z} \approx 91 \text{GeV}\]

\[\Delta m_{h} \gtrsim 87 \text{GeV}\]
U(1) extended MSSMs (UMSSMs) have been broadly worked upon the literature.
U(1) extended MSSMs (UMSSMs) have been broadly worked upon the literature.
These models can dynamically generate the μ term at the EW scale.
U(1) extended MSSMs (UMSSMs) have been broadly worked upon the literature.

These models can dynamically generate the μ term at the EW scale.

One of them is the scenario which can be realised by breaking the exceptional group E_6, so called E_6 motivated UMSSM.

- The fundamental 27-dimensional representations.
- Cancellation of gauge anomalies.
- See-saw mechanisms for neutrino mass and mixing generation.
$E_6 \rightarrow SO(10) \times U(1)_\psi \rightarrow SU(5) \times U(1)_\chi \times U(1)_\psi \rightarrow G_{MSSM} \times U(1)'$

$U(1)' = \cos \theta_{E_6} \ U(1)_\chi - \sin \theta_{E_6} \ U(1)_\psi$
$E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \rightarrow G_{\text{MSSM}} \times U(1)'$

$U(1)' = \cos \theta_{E_6} U(1)_\chi - \sin \theta_{E_6} U(1)_\psi$

Superpotential:

$$W_{\text{UMSSM}} = Y_u \hat{Q} H_u \hat{U} + Y_d \hat{Q} H_d \hat{D} + Y_e \hat{L} H_d \hat{E} + h_s \langle S \rangle$$

$$\mu = h_s \langle S \rangle$$
\[E_6 \rightarrow SO(10) \times U(1)_\psi \rightarrow SU(5) \times U(1)_\chi \times U(1)_\psi \rightarrow G_{\text{MSSM}} \times U(1)' \]

\[U(1)' = \cos \theta_{E_6} U(1)_\chi - \sin \theta_{E_6} U(1)_\psi \]

Superpotential:

\[W_{\text{UMSSM}} = Y_u \hat{Q} H_u \hat{U} + Y_d \hat{Q} H_d \hat{D} + Y_e \hat{L} H_d \hat{E} + h_s S H_d H_u \]

\[\mu = h_s \langle S \rangle \]

U(1)' Charges:

<table>
<thead>
<tr>
<th>Model</th>
<th>(\hat{Q})</th>
<th>(\hat{U}^c)</th>
<th>(\hat{D}^c)</th>
<th>(\hat{L})</th>
<th>(\hat{E}^c)</th>
<th>(\hat{H}_d)</th>
<th>(\hat{H}_u)</th>
<th>(\hat{S})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\sqrt{6} \ U(1)_\psi)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>(2\sqrt{10} \ U(1)_\chi)</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Q^i = Q^i_\chi \cos \theta_{E_6} - Q^i_\psi \sin \theta_{E_6} \]
Higgs Potential:

\[V_{Higgs}^{UMSSM} = V_{Higgs}^{MSSM} |_{\mu = h_S s} + m_S^2 |S|^2 \]

\[+ \frac{g'^2}{2} \left(Q_{H_u} |H_u|^2 + Q_{H_d} |H_d|^2 + Q_S |S|^2 \right) \]
Higgs Potential:

\[
V_{Higgs}^{UMSSM} = V_{Higgs}^{MSSM} |_\mu = h_S s + m_S^2 |S|^2 \\
+ \frac{g'^2}{2} (Q_{H_u}|H_u|^2 + Q_{H_d}|H_d|^2 + Q_S|S|^2)
\]

\[Z-Z'\text{ Mass Mixing:}\]

\[
M_Z^2 = \begin{pmatrix}
M_{ZZ}^2 & M_{ZZ'}^2 \\
M_{ZZ'}^2 & M_{Z'Z'}^2
\end{pmatrix}
\]

\[
= \begin{pmatrix}
2g_1^2 \sum_i t_{3i}^2 |\langle \phi_i \rangle|^2 & 2g_1g' \sum_i t_{3i} Q_i |\langle \phi_i \rangle|^2 \\
g_1g' \sum_i t_{3i} Q_i |\langle \phi_i \rangle|^2 & 2g'^2 \sum_i Q_i^2 |\langle \phi_i \rangle|^2
\end{pmatrix}
\]

\[
\tan 2\alpha_{ZZ'} = \frac{2M_{ZZ'}^2}{M_{Z'Z'}^2 - M_{ZZ}^2}.
\]

\[
M_{Z,Z'}^2 = \frac{1}{2} \left[M_{ZZ}^2 + M_{Z'Z'}^2 \mp \sqrt{(M_{ZZ}^2 - M_{Z'Z'}^2)^2 + 4M_{ZZ'}^4} \right].
\]
Kinetic Mixing:

\[\mathcal{L}_{\text{kin}} \supset -\frac{\kappa}{2} \hat{B}^{\mu\nu} \hat{Z}'_{\mu\nu} \]

\[
\begin{pmatrix}
\hat{B}_\mu \\
\hat{Z}'_\mu
\end{pmatrix} =
\begin{pmatrix}
1 & -\frac{\kappa}{\sqrt{1-\kappa^2}} \\
0 & \frac{1}{\sqrt{1-\kappa^2}}
\end{pmatrix}
\begin{pmatrix}
B_\mu \\
Z'_\mu
\end{pmatrix}
\]

\[
g_y = \frac{g_{YY} g_{EE} - g_{YE} g_{EY}}{\sqrt{g_{EE}^2 + g_{EY}^2}} = g_1,
\]

\[
g_{yp} = \frac{g_{YY} g_{EY} + g_{YE} g_{EE}}{\sqrt{g_{EE}^2 + g_{EY}^2}} = -\kappa g_1 \frac{1}{\sqrt{1-\kappa^2}},
\]

\[
g_p = \sqrt{g_{EE}^2 + g_{EY}^2} = g' \frac{1}{\sqrt{1-\kappa^2}}
\]

\[G = \begin{pmatrix} g_{YY} & g_{YE} \\ g_{EY} & g_{EE} \end{pmatrix} \]
Kinetic Mixing:

\[\mathcal{L}_{\text{int}} = -\bar{\psi}_i \gamma^\mu \left[g_y Y_i B_\mu + (g_p Q_i + g_{yp} Y_i) Z'_\mu \right] \psi_i \]

\[Q_{i}^{\text{eff}} = Q_i - \kappa \frac{g_1}{g'} Y_i \]
Parameter Space

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scanned range</th>
<th>Parameter</th>
<th>Scanned range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_0</td>
<td>$[0., 3.]$ TeV</td>
<td>h_s</td>
<td>$[0., 0.7]$</td>
</tr>
<tr>
<td>$M_{1,4}/M_3$</td>
<td>$[-15., 15.]$</td>
<td>ν_S</td>
<td>$[1., 15.]$ TeV</td>
</tr>
<tr>
<td>M_3</td>
<td>$[0., 3.]$ TeV</td>
<td>A_s</td>
<td>$[-5., 5.]$ TeV</td>
</tr>
<tr>
<td>M_2/M_3</td>
<td>$[-5., 5.]$</td>
<td>θ_{E_6}</td>
<td>$[-\pi/2, \pi/2]$</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>$[1., 50.]$</td>
<td>κ</td>
<td>$[-0.5, 0.5]$</td>
</tr>
<tr>
<td>A_0</td>
<td>$[-5., -5.]$ TeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraints

\[m_h = 123 - 127 \text{ GeV (and SM - like couplings)}, \]
\[m_{\tilde{g}} \geq 1.8 \text{ TeV}, \]
\[0.8 \times 10^{-9} \leq \text{BR}(B_s \rightarrow \mu^+\mu^-) \leq 6.2 \times 10^{-9} \ (2\sigma \text{ tolerance}), \]
\[m_{\tilde{\chi}^0_1} \geq 103.5 \text{ GeV}, \]
\[m_{\tilde{\tau}} \geq 105 \text{ GeV}, \]
\[2.99 \times 10^{-4} \leq \text{BR}(B \rightarrow X_s\gamma) \leq 3.87 \times 10^{-4} \ (2\sigma \text{ tolerance}), \]
\[0.15 \leq \frac{\text{BR}(B_u \rightarrow \tau\nu_{\tau})_{\text{UMSSM}}}{\text{BR}(B_u \rightarrow \tau\nu_{\tau})_{\text{SM}}} \leq 2.41 \ (3\sigma \text{ tolerance}), \]
\[0.0913 \leq \Omega_{\text{CDM}} h^2 \leq 0.1363 \ (5\sigma \text{ tolerance}). \]

(1)
Grey: Radiative EWSB (REWSB) and neutralino LSP.
Red: The subset of grey plus Higgs boson mass and coupling constraints, SUSY particle mass bounds and EWPT requirements.
Green: The subset of red plus B-physics constraints.
Blue: The subset of green plus WMAP constraints on the relic abundance of the neutralino LSP (within 5σ).
Black: The subset of blue plus exclusion limits at the LHC from Z' direct searches via $pp \rightarrow Z' \rightarrow ll$ and $pp \rightarrow Z' \rightarrow WW$.
$\Gamma(Z' \rightarrow WW)$ is proportional to $M_{Z'}^5/M_W^4$ as well as $\sin^2 \alpha_{ZZ'}$.

\[\Gamma(Z' \rightarrow WW) \propto \frac{M_{Z'}^5}{M_W^4} \cdot \sin^2 \alpha_{ZZ'} \]
Parameter Space and Z' Decay Width
Effective U(1)’ Charges and Z’ Decays
Neutralino Masses
Introduction

E6 Motivated UMSSM

Results

Conclusion

Dark Matter-Relic Density
Dark Matter-Direct Detection

Motivated UMSSM

Results

Conclusion

Introduction
We have explored the low scale and DM implications of an E_6 based UMSSM, with generic mixing between the two ensuing Abelian groups under current experimental and Dark Matter bounds.
We have explored the low scale and DM implications of an E_6 based UMSSM, with generic mixing between the two ensuing Abelian groups under current experimental and Dark Matter bounds.

We have studied on the gauge kinetic mixing between the Z and Z' states which in turn onsets a significant $Z'WW$ coupling. We have found that the $Z' \rightarrow WW$ decay channel overwhelm the $Z' \rightarrow ll$ one, thus producing a wide (yet, still perturbative) Z' state and so that it is the former and not the latter search channel that sets the limit on $M_{Z'}$, at 4 TeV,
We have explored the low scale and DM implications of an E_6 based UMSSM, with generic mixing between the two ensuing Abelian groups under current experimental and Dark Matter bounds.

We have studied on the gauge kinetic mixing between the Z and Z' states which in turn onsets a significant $Z'WW$ coupling. We have found that the $Z' \rightarrow WW$ decay channel overwhelm the $Z' \rightarrow ll$ one, thus producing a wide (yet, still perturbative) Z' state and so that it is the former and not the latter search channel that sets the limit on $M_{Z'}$, at 4 TeV,

The fundamental parameters, i.e., the gauge kinetic mixing coefficient and the E_6 mixing angle, are found to be $0.2 \lesssim \kappa \lesssim 0.4$ and $-1 \lesssim \theta_{E6} \lesssim -0.8$ radians.
We have found two specific Dark Matter LSP compositions which are consistent with all current experimental bounds coming from relic density and direct detection experiments: a higgsino-like LSP neutralino with $0.9 \text{ TeV} \lesssim m_{\chi_1^0} \lesssim 1.2 \text{ TeV}$ and a singlino-like LSP neutralino with $0.9 \text{ TeV} \lesssim m_{\chi_1^0} \lesssim 1.6 \text{ TeV}$.
We have found two specific Dark Matter LSP compositions which are consistent with all current experimental bounds coming from relic density and direct detection experiments: a higgsino-like LSP neutralino with $0.9 \, \text{TeV} \lesssim m_{\chi_1^0} \lesssim 1.2 \, \text{TeV}$ and a singlino-like LSP neutralino with $0.9 \, \text{TeV} \lesssim m_{\chi_1^0} \lesssim 1.6 \, \text{TeV}$.

Our solutions which are compatible with experimental bounds include heavy sparticle spectrum for third generation sfermions ($m_{\tilde{t}, \tilde{b}} \gtrsim 4 \, \text{TeV}$ and $m_{\tilde{\tau}} \gtrsim 5 \, \text{TeV}$) as well as the gluino ($m_{\tilde{g}} \gtrsim 4 \, \text{TeV}$).
Thank You for Your Attention!!!