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Physics Objective

I A good jet clustering algorithm will accurately match the kinematics
of the partons chosen as tags.

I This accuracy should vary smoothly with the cut-off parameter.
I The jets formed should replicate the mass of the partons in the hard

interaction.
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Clustering in ML

Many attempts have been made to write a ’good’ clustering algorithm.
Most of them are not hierarchical, they are based on fitting a predefined
model. This poses a challenge for jet clustering, we do not have a
predefined number of clusters.
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Clustering comparison

Figure: Taken from
https://towardsdatascience .com/the−5−clustering−algorithms−data−scientists−need−to−know−a36d136ef68?gi=30cb951e7fbc
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Aim of clustering
Let our points be nodes of a graph and the vertices carry a measure of
the affinity, ai,j .

,
Jet Clustering with Spectral Clustering 6/26



Aim of clustering

We wish to split the points such that the severed affinities are minimised.

Often the optimum split by this metric will isolate one point. To avoid
this small clusters are penalised.
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Aim of clustering

These criteria result in RatioCut. If W (A,B) =
∑

i∈A,j∈B ai,j is the
sum of the affinities that cross from A to B, and |A| is the number of
nodes in A;

RatioCut(A1, A2, . . . An) ≡ 1
2

n∑
i=1

W (Ai, Āi)
|Ai|

In the case of disconnected components (with zero affinity between
clusters) this can be solved for with the eigenvalues of the matrix known
as the graph Laplacien.
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Theory
Let us imagine a graph, disconnected in n clusters.
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Theory
Let us imagine a graph, disconnected in n clusters. Membership of
cluster k is determined by the indicator vector hk;

hi,k =
{

1/
√
|Ak|, if point i ∈ Ak

0, otherwise

The graph is represented by the graph Laplacien;

L =


∑
a1,i −a1,2 −a1,3 . . .

−a1,2
∑
a2,i −a2,3

−a1,3 −a2,3
∑
a3,i

...
. . .


Then

h′
kLhk = 1

|Ak|
∑

i∈Ak,j∈Ak

(
δi,j

∑
l

al,i − ai,j

)
= W (Ak, Āk)

|Ak|
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Theory

h′
kLhk = 1

|Ak|
∑

i∈Ak,j∈Ak

(
δi,j

∑
l

al,i − ai,j

)
= W (Ak, Āk)

|Ak|

Then stack the of all clusters together

h′
kLhk = (H ′LH)kk

and the RatioCut aim described earlier is the trace;

RatioCut(A1, A2, . . . An) ≡ 1
2

n∑
i=1

W (Ai, Āi)
|Ai|

= Tr(H ′LH)

Where H ′H = I. Trace minimsation in this form is done by finding the
eigenvectors of L with smallest eigenvalues.
Generalising this to a graph that is not disconnected is just relaxing the
requirements on the form of the indicator vectors; hk.
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Practice
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Practice
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Results

A jet clustering algorithm that matches the kinematics of the tagging
partons is good. Spectral clustering can do this quite well, for example
here is a comparison of the pT of the jets compared to the tagging
partons.
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Results
The data was generated from a 125GeV Higgs decaying into 2 40GeV
higgs. Cuts on pT and η shift the mass peaks that could be
reconstructed.
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Results

The Cambridge Aachen algorithms recreates the first peak (from one
light higgs) very well, and the second peak from the heavy Higgs a little;
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Results

Spectral clustering is not producing such recognisable peaks.

I am not sure why this is failing to reconstruct peaks.
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Conclusions

This clustering method is interesting in theory and well motivated, and it
can accurately reconstruct the kinematics of the partons creating the
shower. However its failure to reconstruct mass peaks found by
Cambridge on Monte Carlo data is frustrating and it more investigation is
needed to see why it fails on this point.

Thank you for listening.
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