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From the black hole, through the wormhole
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Outline

From GR to Generalised Theories of Gravity

The Einstein-Scalar-Gauss-Bonnet Theories

Black-Hole Solutions in EsGB

Wormhole Solutions in EsGB

Particle-like Solutions in EsGB

Conclusions
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Introduction

Einstein’s General Theory of Relativity based on his field equations

Rµν − 1
2 gµνR = 8πG Tµν

describes extremely accurately gravity around
ordinary astrophysical bodies, such as our Sun,

predicts the existence of “exotic” objects
such as black holes or wormholes

Although a beautiful mathematical theory, Einstein’s General Relativity is
not considered as the final theory of Gravity due to a number of problems
(dark matter, dark energy, coincidence problem, initial singularity
problem, non-unification with the other forces etc)...
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Gravitational Solutions in General Relativity

In addition, General Relativity is a rather restrictive theory from the point
of view of gravitational solutions:

it admits only three families of Black-Hole solutions: Schwarzschild
(1916), Reissner-Nordstrom (1921) and Kerr(-Newman) (1963)

According to the “no-hair” theorems of GR (Birkhoff; Israel; Carter;
Price; Hartle; Teitelboim; Bekenstein), these may be characterized
only by their mass M, electromagnetic charge Q and angular
momentum J

A BH has no colour, baryon and lepton number, or scalar charges...

it does admit Wormholes hidden in the interior of all black-hole
solutions but these are not traversable wormholes
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Generalised Theories of Gravity

In the absence of the fundamental Quantum Theory of Gravity, we may
consider modified effective theories of gravity by introducing extra fields
and/or higher gravitational terms

A generalised theory of gravity could have the form

S =

∫
d4x

√
−g

[
f (R,Rµν ,Rµνρσ,Φi ) + LX (Φi )

]
There is a plethora of modified theories of gravity in the literature:

Scalar-tensor theories, f (R) theories, Higher-derivative theories,
Chern-Simons gravity, Einstein-aether theory, Massive gravity,
Gravitational aether, f (T ) theories, TeVes, ...

The hope: such a modified theory may describe more accurately the
stronger gravity regime which we are slowly starting to explore (neutron-
star properties, gravitational waves by LIGO/Virgo, bounds from EHT ...)
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Scalar No-Hair Theorems

Can we find new black-hole solutions in the context of such a theory?
And, what happens to the old GR solutions already observed in nature?

In the context of theories with scalar fields, non-existence theorems
readily emerged: the ‘Scalar No-Hair Theorem’ (Bekenstein, 1972;
Teitelboim, 1972) excluded novel BH solutions in minimally-coupled and
non-minimally coupled (Bekenstein, 1994) scalar-tensor theories - new
formulations (Sotiriou & Faraoni, 2012; Hui & Nicolis, 2013) covered the
case of more general scalar-tensor theories

However, ... as the conditions of the non-existence theorems are violated,
new black-hole solutions easily emerge: solutions with a Skyrme field
(Luckock & Moss, 1986; Droz et al, 1994), a conformally-coupled scalar
field (Bekenstein, 1974), a dilaton field (Kanti et al, 1996) and a gauge
field (Torii et al, 1997; Kanti et al, 1997), rotating BHs (Kleihaus et al,
2011; Pani et al, 2011) and shift-symmetric Galileon BHs (Babichev &
Charmousis, 2014; Sotiriou & Zhou, 2014), ...
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The Einstein-Scalar-Gauss-Bonnet Theory

We therefore need to consider a gravity theory that evades the no-hair
requirements and remains legitimate, such as

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
∂µϕ∂

µϕ+ f (ϕ)R2
GB

]
,

with f (ϕ) a coupling function between a scalar field ϕ and the GB term

R2
GB = RµνρσR

µνρσ − 4RµνR
µν + R2

Such a theory arises

as part of the string effective action at low energies

as part of a Lovelock effective theory in four dimensions

as part of a modified scalar-tensor (Horndeski or DHOST) theory

It contains a quadratic gravitational term (next important term in strong
curvature regimes) but leads to field equations with up to 2nd-order
derivatives, and with no Ostrogradski instabilities
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Black-Hole Solutions in Einstein-Scalar-GB

• The Basic Question: For what forms of the coupling function f (ϕ) can
one get a static, spherically-symmetric black-hole solution?

Keeping therefore the form of f (ϕ) arbitrary, we assume the line-element

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θ dφ2)

while the equations of motion read

∇2ϕ+ ḟ (ϕ)R2
GB = 0 , Rµν −

1

2
gµν R = Tµν

where

Tµν = −1

4
gµν(∂ϕ)

2+
1

2
∂µϕ∂νϕ−

1

2
(gρµgλν+gλµgρν)η

κλαβR̃ργαβ∇γ∂κf ,

⇓
A′′ = P

S , ϕ′′ = Q
S , P,Q, S = g(r , ϕ, ϕ′,A′)
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Black-Hole Solutions in Einstein-Scalar-GB

• For the existence of a regular black-hole horizon, we demand that

eA(r) → 0, e−B(r) → 0, ϕ(r) → ϕh

Demanding that ϕ′′ is also finite at the horizon rh, we find the constraint

ϕ′h =
rh

4ḟh

−1±

√
1−

96ḟ 2h
r4h

 , ḟ 2h <
r4h
96

• At large distances from the horizon, we obtain a power series expansion
in 1/r of the form

eA = 1− 2M

r
+

MD2

12r3
+ ..., eB = 1 +

2M

r
+

16M2 − D2

4r2
+ ...

ϕ = ϕ∞ +
D

r
+

MD

r2
+

32M2D − D3

24r3
+

12M3D − 24M2 ḟ −MD3

6r4
+ ...

A general coupling function f does not interfere with the existence of a
regular event horizon or an asymptotically-flat limit
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Black-Hole Solutions in Einstein-Scalar-GB

The construction of a complete black-hole solution demands the smooth
matching of these two asymptotic solutions

This is where the no-hair theorems enter... Bekenstein’s No-Hair theorem
(1994) dictated that this cannot be done if “T r

r is negative near the BH
horizon”

However, in the Einstein-scalar-Gauss-Bonnet theories with arbitrary f ,
this is not true since it holds that

sign(T r
r )h = −sign(ḟhϕ

′
h)) > 0

The presence of the Gauss-Bonnet term in the theory guarantees the
evasion of the scalar no-hair theorem

The aforementioned analysis was followed in 1996 to prove that the
dilatonic theory with f (ϕ) = αeϕ evades Bekenstein’s theorem and
numerically demonstrate the existence of the dilatonic black holes
(Kanti, Mavromatos, Rizos, Tamvakis, Winstanley, PRD 1996)
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Black-Hole Solutions in Einstein-Scalar-GB

Choosing f (ϕ) and then (ϕh, ϕ
′
h), we found numerous BH solutions:

(Antoniou, Bakopoulos & Kanti, PRL 2018, PRD 2018)

α=0.01
gtt

grr

1 5 10 50 100 500
0

1

2

3

4

5

6

r
1 5 10 50 100 500 1000

0.8

0.9

1.0

1.1

1.2

There is a huge literature on different types of black holes with a
non-trivial scalar field...

Almost simultaneously two additional works appeared for f ∼ 1− e−ϕ
2

(Doneva & Yazadjiev, 2018) and f = aϕ2 (Silva et al, 2018) discussing
spontaneously scalarised black holes, i.e. BHs with a scalar field emerging
when a GR solution is destabilised (Damour & Esposito-Farese, 1993)
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Black-Hole Solutions in Einstein-Scalar-GB

0.0009<α<0.919

φh=3, rh=1

0.5 1 5 10

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

M/α1/2

D
/α
1/
2

0.009<α<0.919
φh=3, rh=1

Ah/Asch

Sh/Ssch

1.0 1.5 2.0

0.85

0.90

0.95

1.00

1.05

1.10

M/α1/2

Our solutions are naturally scalarised and always have a non-trivial
ϕ – the GR solution may not exist as an independent solution

In the limit of large mass, all GB black holes reduce to the
Schwarzschild solution ⇒ Schwarzschild BHs are large GB BHs

The scalar charge D is a “secondary” conserved quantity

The entropy of the GB black holes may exceed that of the
Schwarzschild solution (shown that of f (ϕ) ∼ 1/ϕ)

All GB black holes have a minimum mass Mmin
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Black-Hole Solutions in Einstein-Scalar-GB

If we add a negative cosmological constant in the theory, the spacetime
reduces asymptotically to an Anti-de Sitter background

A regular black-hole horizon emerges again provided that

ϕ′h =
16Λrh ḟ

2 (Λr2h − 3) + Λr5h − r3h ∓
√
R

4ḟ [r2h − Λ(r4h − ḟ 2)]

A plethora of solutions emerged for
f (ϕ) = e±ϕ, ϕ±2n, ϕ±(2n+1), lnϕ, ...
as easily as the ones with asympto-
tically-flat behaviour (Bakopoulos,
Antoniou, Kanti, PRD 2019)

� �� �� ��� ��� ����

���

���

���

���

���

At large distances, the scalar field
behaves as:

ϕ(r) = ϕ∞ + d1 ln r +
d2
r2

+ ...
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Black-Hole Solutions in Einstein-Scalar-GB

We now promote the negative cosmological constant to a dynamic
potential for the scalar field (Bakopoulos, Kanti & Pappas, PRD 2020)

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
∂µϕ∂

µϕ+ f (ϕ)R2
GB − 2ΛV (ϕ)

]
We considered Λ < 0 and different choices for f (ϕ) and V (ϕ). Again,
black-hole solutions with a regular horizon and a non-trivial ϕ emerged

10 100 1000 104 105 106

-0.02

0.00

0.02

0.04

0.06
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0.10

100 1000 104 105 106
-0.0010

-0.0005

0.0000

0.0005

0.0010

2 5 10
0.0

0.5
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1.5

In the case where V (ϕ) = ϕ2, the solutions are divided in two groups:
large, low-mass BHs and small, large-mass (ultracompact) BHs
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Wormholes in General Relativity

Wormholes are well motivated objects since, in GR, they hide inside the
horizon of a black hole – the complete Schwarzschild geometry is:

A B C D E

r = 2GM

v

The region inside the horizon of a Schwarzschild BH, r < rh = 2M, is
dynamical and a throat appears in place of the singularity as time goes by

But the throat closes so quickly that not even a light signal can pass
through (Einstein-Rosen, 1935; Wheeler, 1955)

The Reissner-Nordstrom and Kerr geometries have generically internal
tunnels - but the internal Cauchy horizons are unstable
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Wormholes in General Relativity

Looking for a traversable wormhole, Morris & Thorne (1988) disconne-
cted the wormhole from the black hole. Using an ansatz of the form

ds2 = −e2Φ(r) dt2 +

(
1− b(r)

r

)−1

dr2 + r2 (dθ2 + sin2 θ dφ2),

they demanded

an asymptotically-flat regime: Φ → 0 and b/r → 0, for r → ∞

the absence of a horizon or singularity: Φ(r) everywhere regular

the presence of a throat at rmin = b0 where b(rmin) = b0

The above demand in turn an energy-momentum tensor

Ttt = ρ , Trr = −τ , Tθθ = Tφφ = p

satisfying τ ≥ ρ ⇒ violation of Null Energy Condition ⇒ Exotic Matter
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Wormholes in EsGB Theory

There has been a large number of efforts in the literature to produce such
an exotic yet realistic distribution of matter...

In the context of the EsGB theory, one may easily observe that close to
the BH horizon it holds

ρ ≃ −2e−B

r2
B ′ϕ′ ḟ < 0 , pr ≃ −2e−B

r2
A′ϕ′ ḟ > 0

since as r → rh, B
′ < 0 and A′ > 0. Thus, the GB term does create the

effective energy-momentum tensor we need for the support of a wormhole

Indeed, our early work (Kanti et al. 1996) contained the regular solution

ds2 = −eA(ℓ)dt2 + eB(ℓ)dℓ2 + (ℓ2 + r20 ) (dθ
2 + sin2 θdφ2)

where

eA = a0 + a1ℓ+ ... , eB(r) = b0 + b1ℓ+ ..., , ϕ(ℓ) = ϕ0 + ϕ1ℓ+ ...

The above describes a wormhole with the throat at r = r0 or ℓ = 0
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Wormholes in EsGB Theory

At large distances, we obtain (Kanti, Kleihaus & Kunz, PRL 2011, PRD
2012)

eA ≃ 1− 2M

ℓ
+ ..., eB = 1 +

2M

ℓ
+ ... , ϕ ≃ ϕ∞ +

D

ℓ
+ ... ,

where M and D are the mass and scalar charge of the wormhole
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Regular symmetric solutions arise if a perfect fluid (non-exotic!) and a
gravitational source term are introduced at the throat

S =

∫
d3x

√
h (λ1 + λ0e

ϕR̃)
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Wormholes in EsGB Theory

All these were valid for f (ϕ) ∼ eϕ. What happens for other forms of
f (ϕ)? In the context of the EsGB theory, we looked for solutions:

ds2 = −eA(η)dt2 + eB(η)
[
dη2 + (η2 + η20) (dθ

2 + sin2 θdφ2)
]

One way of studying the emergence of a throat is by studying the
circumferential radius defined as

Rc(η) =
1

2π

∫ 2π

0

√
gφφ|θ=π/2 dφ = eB(η)/2

√
η2 + η20

A throat corresponds to a local minimum of Rc , thus we should have

dRc

dξ

∣∣∣∣∣
η∗

∝ B ′(η∗) = 0 ,
d2Rc

dξ2

∣∣∣∣∣
η∗

∝ η20B
′′(η∗) + 2 > 0

where dξ = eB/2dη is the proper radial distance. Two
extrema arise: a minimum, which stands for the throat,
and a maximum, which stands for an equator
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Wormholes in EsGB Theory

We found regular wormhole solutions for every form of f (ϕ) with an
asymptotically-flat behaviour and with a single or double throat

The NEC still needs to be violated for a wormhole solution to arise. In
fact, we find

(ρ+ pη)|η∗ = −2[e−BR ′′
c ]η∗

Thus the NEC is always violated at the throat but is obeyed at the
equator. But, even at the throat, the violation holds for the effective
energy-momentum tensor components

Tµν = Tϕ
µν + TGB

µν

The wormhole geometry is supported
by the coupling of a non-phantom scalar
field to a quadratic gravitational term
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All EsGB WHs are bounded by the
corresponding BHs and are free of any
exotic matter (Antoniou, Bakopoulos, Kanti, Kleihaus, Kunz, PRD 2020)
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Particle-like Solutions in EsGB Theory

Particle-like solutions are common in flat space-time, usually termed
solitons. Gravity allows for similar solutions not always with attractive
properties. E.g. in the context of the Einstein-scalar theory, the singular
Fisher/Janis-Newman-Winicour-Wyman (1948/68) solution arises with

eA ∼ e−B ∼
(
1− 1

2s

M

r

)
, ϕ ∼ ln

(
1− 1

2s

M

r

)

In the context of the EsGB theory, we looked also for solutions with a
regular spacetime, with no singularities, no horizons and no throats

ds2 = −eA(r)dt2 + eB(r)
[
dr2 + r2 (dθ2 + sin2 θdφ2)

]
At large distances, the asymptotic behaviour is the same as for black
holes and wormholes. At small distances, for e.g. f (ϕ) = αϕ2, we find

A(r) = A0+A2r
2+A3r

3+ . . . , ϕ = −c0
r
+ϕ0+ϕ1r+ϕ2r

2+ϕ3r
3+ . . .
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Particle-like Solutions in EsGB Theory
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All scalar invariants are finite everywhere, as are also all components of
Tµν despite the singularity in ϕ: (Kleihaus, Kunz & Kanti, PLB 2020,
PRD 2020)

ρ(0) = − 3

32α
, p(0) =

2

32α

The energy-momentum tensor has a regular, shell-like behaviour and
vanishes at a very small radius qualifying these solutions as ultra compact
objects (UCOs) – missed by Brihaye, Hartmann and Urrestilla (2018)
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Particle-like Solutions in EsGB Theory

We studied also the propagation of particles in this background - for
photons this may be done through the relation L = gµν ẋ

µ ẋν = 0

The extrema in the photon effective potential correspond to circular
orbits and lead to the presence of light rings around these UCOs
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We finally considered the propagation of a scalar test particle ψ in this
background. The form of the effective potential V ψ

eff with its two
potential barriers results into the creation of echoes in the wave signal
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Conclusions

• The Generalised Theories of Gravity may be the way forward in
gravitational physics

• The Einstein-scalar-Gauss-Bonnet theory is a very promising type of a
quadratic theory that admits a variety of solutions

 0
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d
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S
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w
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• Its solution space contains regular black holes, wormholes with no need
for exotic matter and particle-like solutions all with scalar hair and for
arbitrary coupling function

• What else could there be in there??? Soon (or later) to be discovered...
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