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Overview
A (very brief!) look at ATLAS machine learning activities for non-collider
physicists:

A quick tour of the experiment (using Higgs-related examples)

Machine learning can improve our measurements of the Higgs boson!

Unsupervised searches and anomaly detection (aka is there something
beyond the Higgs?)
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CERN and the LHC



CERN: the European Organisation
for Nuclear Research
The acronym doesn't make sense.

It's now also an international organisation beyond Europe.

And we mostly do high energy particle physics, rather than nuclear.
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A brief history of CERN

1949: a concrete idea for a renewal of nuclear research and scienti�c
excellence in Europe

1952: picking the right location (Geneva, Switzerland)

1954: start of construction and of�cial birth of CERN

1957: the 600 MeV Synchro-Cyclotron starts up

1959: the 28 GeV Proton Synchrotron starts up

1971: �rst proton-proton collisions!

1976: the 400-450 GeV Super Proton Synchroton starts up

1983: discovery of the  and  bosons!

1989: the 100-200 GeV Large Electron Positron collider starts up

1990: the �rst website is up at CERN

2008: the 7-8-13 TeV Large Hadron Collider starts up

2012: discovery of the Higgs boson!

W± Z0
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The LHC in numbers

Property Value

Circumference 27 km

Depth 100 m

Magnet operating temperature 1.9 K (-271.3ºC)

Number of magnets 9,593

Beam pressure 1.013×10-10 mbar

Nominal energy (protons) 6.5 TeV

Number of bunches per proton beam 2,808

Number of protons per bunch 1.2x1011

Number of turns per second 11,245

Number of collisions per second 1 billion

Cost CHF 4.3 billions

Energy consumption (CERN) 1.3 TWh/year

Energy production (Geneva) 3 TWh/year

Both colder and emptier than interstellar space!
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The timeline

Of course, Covid-19 complicates things... Now expecting Run 3 to start in Q1 of
2022.

But there's still a lot to do with Run 2 data!
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The biggest news so far

Clear evidence for the production of a neutral boson  
with a measured mass of 126 GeV [...] signi�cance of 5.9 σ
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Branching ratios of the Higgs boson
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A closer look at these discoveries
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A closer look at these discoveries
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The ATLAS experiment



The collaboration

3,000 scientists!
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The detector

The eight toroid magnets and the calorimeter.
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The detector

100 m underground / 7,000 tonnes / 100 million electronic channels / 3,000 km of cables
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Detector technologies at a glance
Trackers measure the momentum of charged particles:

gaseous detectors rely on the ionisation of gas (xenon, CO2) and the ensuing

transition radiation

solid-state detectors enable the creation of electron-hole pairs in the dense
material (Silicon), arranged in strips or pixels
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Inner detector (tracker)
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Detector technologies at a glance
Calorimeters measure the energy deposited by incoming particles as they travel
through it:

alternate layers of dense, absorbing material (iron or lead) and active medium
(liquid argon, LAr)

the master equation is  where  is the radiation length 

material

electromagnetic cascade decays give precise measurements of electrons and
photons, but hadronic cascade are much more complex

in general, the energy resolution increases with energy

E = E  e0
−x/X  0 X  0 ∝
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Calorimeters
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Detector technologies at a glance
Muon spectrometers are essentially trackers too:

use gas-based instrumentation (drift tubes, thin-gap and resistive-plate
chambers) to measure the momentum of muons

assuming that whatever made it through the ECAL+HCAL is a muon!
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Muon spectrometer
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Particle identi�cation in ATLAS

Quarks hadronise and form jets: messy! → many jet constituents
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Particle identi�cation in ATLAS

Jet clustering
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Particle identi�cation in ATLAS

Jet tagging
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Quiz time: what's that Higgs?



Candidate event 1
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Candidate event 1

H → ZZ →∗ e e μ μ+ − + −
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Candidate event 2
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Candidate event 2

H → γγ
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Machine learning at ATLAS



Early  at ATLAS

BDT (with ROOT TMVA) trained on ~10 variables, crucial for background
discrimination and eventual observation of the Higgs coupling to taus! ( )

H → τ τ+ −

arXiv:1501.04943

4.5σ
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https://arxiv.org/pdf/1501.04943.pdf


With and without Machine Learning...

Do more with less!

A. Radovic et al., Machine learning at the energy and intensity frontiers of particle physics 25 / 66

https://www.nature.com/articles/s41586-018-0361-2.pdf


Machine learning instead of or beyond physics?

The  paper we saw previously used high-level variables: complex

observables meant to represent physical quantities of interest (invariant masses,
opening angles, sphericity, centrality...). These are very close to our understanding
as (human!) physicists — it's how we usually approach the problem.

But is it the best way to go for a machine?

 

arXiv:1402.4735

H → τ τ+ −
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https://arxiv.org/pdf/1402.4735.pdf


A booming �eld
The number of applications of machine learning to high energy physics has
exploded in recent years:

(supervised) separation tasks: backgrounds vs signal

sampling and optimisation of calibration algorithms

reconstruction of particles (tracking, clustering)

fast detector simulation

adversarial networks to remove dependency on limiting systematic
uncertainties

ef�cient data compression and AI for triggers

transfer learning

graphs and sets to deal with many-particle systems

likelihood-free inference

anomaly detection
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Tackling variability of inputs with Recurrent Neural Networks



Recurrent units
Introduce the concept of states to deal with sequences: time series, chains of
molecules, syntactic elements, etc.

The state  is a function of the previous state  and the input feature . In a

sense, the network "replicates" itself with each pass (unfolding/unrolling) — it has
a notion of "memory".

h  t h  t−1 x  t
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Recurrent units
Introduce the concept of states to deal with sequences: time series, chains of
molecules, syntactic elements, etc.

The state  is a function of the previous state  and the input feature . In a

sense, the network "replicates" itself with each pass (unfolding/unrolling) — it has
a notion of "memory".

One common problem with long chains of RNN cells: vanishing or exploding
gradients. The latter can be �xed with e.g. gradient clipping. To tackle the former,
more complex cell structures can be used: gated recurrent units (GRUs) and long
short-term memory networks (LTSM) are popular examples. They allow for
"forget-gates" to regularise the learning (a bit like how dropout layers are used in
DNNs)

h  t h  t−1 x  t
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Recurrent NNs for b-tagging

Standard neural networks and BDTs are ill-suited to the problem of dealing with a
variable number of jet constituents and tracks.

Instead, take a list of tracks inside a jet and feed it to an RNN. The ordering is
physics-inspired: signi�cance of the impact parameter.

Without expliciting vertexing, excellent performance is still achieved!

ATL-PHYS-PUB-2017-003 29 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/


Recurrent NNs for b-tagging

 

ATL-PHYS-PUB-2017-003 29 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/


Staying on track(s): a quick interlude



The tracking crisis
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Crowd-source it!

Competition open to public on Kaggle → can amateurs do better than the pros?
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https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification


Crowd-source it!

Competition open to public on Kaggle → can amateurs do better than the pros?

Sometimes, yes! New approaches (including deep learning) being folded in new
generation of tracking algorithms at ATLAS :)
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https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification


Spotify...
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Spotify-annoy!

"Approximate Nearest Neighbours Oh Yeah!" is on git 33 / 66

https://github.com/spotify/annoy


Introducing bucketing

Drastic reduction in complexity! Allows for supervised learning on "buckets", or
unsupervised clustering approaches (we'll come back to those in a moment)...

S. Amrouche, Music, neighbours and tracking 34 / 66

https://indico.cern.ch/event/742793/contributions/3274332/attachments/1822988/2997320/SHTR_CTDWIT19.pdf


Jet images and Convolutional Neural Networks



Jet images
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Jet images

arXiv:1612.01551 36 / 66

https://arxiv.org/pdf/1612.01551.pdf


Convolutional layers
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Convolutional layers in action
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Jet images

arXiv:1612.01551 39 / 66

https://arxiv.org/pdf/1612.01551.pdf


Max-pooling

Max-pooling is a sample-based discretisation process: reduce the dimensionality
of the current layer by down-sampling. This allows to focus on speci�c features.

Note: like the convolution, this operation can have overlaps!
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An example: convolving cats

Imagine you have built a CNN to identify animals. You may start with a picture of
a cat:

More on Medium! 41 / 66

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


An example: convolving cats

A neat trick to make your dataset richer and less sensitive to variations is data
augmentation:

By translating, rotating and smearing this (poor) cat, we generate "new" data and
tell the CNN "not to cheat" by assuming all cats are perfectly centered in the
frame, look to the right, are the right way up etc.
More on Medium! 42 / 66

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


An example: convolving cats

By passing our original image through each convolutional �lter, it's easy to
visualise what information the CNN is actually extracting:

The �rst layer retains most of the information, and starts detecting edges
(through lighting perhaps?)

The second layer makes this edge detection more explicit.

The third layer has identi�ed the relative position of the eyes and the nose

After that, the CNN starts encoding features deeper and deeper, in a low-
level representation that will be useful for classi�cation!

More on Medium! 43 / 66

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


An example: convolving cats

We can picture the �lters themselves, by looking at what image they respond
most maximally to (e.g. gradient ascent from a blank picture):

 

 

More on Medium! 44 / 66

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


(back to) Jet images

arXiv:1612.01551 45 / 66

https://arxiv.org/pdf/1612.01551.pdf


Average quarks and gluons

Pre-process the data: center, rotate and normalise → alternative to generating
new data!

arXiv:1511.05190 46 / 66

https://arxiv.org/pdf/1511.05190.pdf


Average quarks and gluons

Can already observe some physics: colour �ow and octet radiation! (more
separation in  decays, more diffuse radiation in gluons)W

arXiv:1511.05190 46 / 66

https://arxiv.org/pdf/1511.05190.pdf


A CNN quark/gluon tagger

Input is a 16x16 pixel image of different types of constituents: truth particles,
charged tracks, calorimeter clusters/towers

The CNN learns non-linear representations of the image with the goal of
discriminating between quark and gluon jet images

ATL-PHYS-PUB-2017-017 47 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017/


Performance

 

Using calo+track information, the CNN performs maximally (as well as with
truth information).

And it also beats the log-likelihood model using a combination of
substructure observables!

However there are still some Monte Carlo generator biases...

ATL-PHYS-PUB-2017-017 48 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017/


Back to physics: is there something beyond the Higgs?



Supersymmetry?

ATL-PHYS-PUB-2020-020 49 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-020


Exotic particles?

ATL-PHYS-PUB-2020-021 and more 50 / 66

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-021
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/


Resonances in bump hunts?

arXiv:2002.11325 51 / 66

https://arxiv.org/abs/2002.11325


What is anomaly detection?



The basic idea
"Finding patterns that do not conform to expected behaviour." (C. Nellist, 2020)
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The basic idea
"Finding patterns that do not conform to expected behaviour." (C. Nellist, 2020)

Most commonly used in time series: e.g. fraud detection

Assume ignorance of the type of anomaly / "catch-all" strategy: unsupervised
learning!

In particle physics: model-independent BSM searches  
 

Train your algorithm to form an internal representation of your training data
(actual data or MC), apply to unseen events and use some quality criterion: how
"new" is this unseen data?

Note: as in precision measurements, an anomaly (or excess/deviation) doesn't
necessarily translate to BSM physics! It might be BSM, it might be poor detector
performance, high-order QCD correction, extreme region of phase-space etc.
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Bringing in neural networks: CWoLa hunting



Classifying WithOut LAbels
Beautiful (proven) theorem:

A classi�er trained to optimally discriminate mixed sample 1 from mixed
sample 2 is also optimal for discriminating S from B

... so long as B and S are drawn from the same distribution in samples 1 & 2, and
stats are large enough! (fair)

arXiv:1708.02949 53 / 66

https://arxiv.org/pdf/1708.02949.pdf


CWoLa hunting

1. Scan range of interest, de�ning sidebands and signal regions

2. Train networks on background and signal, as de�ned in 1

3. Compute p-value and signal signi�cance in signal region

4. Keep rolling!arXiv:1805.02664 
arXiv:1902.02634 54 / 66

https://arxiv.org/pdf/1805.02664.pdf
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CWoLa hunting

1. Scan range of interest, de�ning sidebands and signal regions

2. Train networks on background and signal, as de�ned in 1

3. Compute p-value and signal signi�cance in signal region

4. Keep rolling!
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https://arxiv.org/pdf/1805.02664.pdf
https://arxiv.org/pdf/1902.02634.pdf


Compression and reconstruction: AEs and VAEs



A neural network with a squeeze

An autoencoder is a DNN with 3 de�ning features:

1. the size of the output is the same as the size of the input

2. the loss is measured with respect to the input (and not some target!)

3. there is a bottleneck
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A neural network with a squeeze

An autoencoder is a DNN with 3 de�ning features:

1. the size of the output is the same as the size of the input

2. the loss is measured with respect to the input (and not some target!)

3. there is a bottleneck

These conditions necessarily lead to a latent space (an internal representation of
the input data), with the means to translate to/from it.
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A neural network with a squeeze

An autoencoder therefore offers 3 main functionalities:

1. it can be used to de-noise data (noise not essential to latent representation!)

2. the latent space might offer new opportunities for discrimination

3. a large reconstruction error signals an anomaly
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The re-parameterisation trick

A variational autoencoder connects the decoder to the encoder via a sampling
layer: the Kullback-Leibler divergence (KLd) term in the loss enforces structure in
the latent space.

The network will eventually learn the most ef�cient balance between the
reconstruction loss and the sampling loss. 58 / 66



The re-parameterisation trick

If we consider only the MSE loss, we lose the constraint on 

and the VAE is allowed to "cheat" by clustering events arbitrarily far apart.

If we consider only the KLd loss, we force the structure of the latent space to be 

: we have generation without modelling!

N (μ,σ) ∼ N (0, 1)

N (0, 1)
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The re-parameterisation trick

If we've found a balance, we have a VAE that:

1. has a continuous latent space, allowing generation of new events

2. has a structured latent space, allowing clustering and discrimination

3. has a large reconstruction error on exotic data, allowing anomaly detection
60 / 66



Spot the differences

VAE setup: compress 27 input jet variables down to 14 in the latent space. 61 / 66



Understanding the latent space

Work ongoing to make sense of the latent space: here see strong correlation
between the residuals on  and .m p  T
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Understanding the latent space

Un-labeled representation of the latent space. 63 / 66



Understanding the latent space

Labeled representation of the latent space. How meaningful are these clusters?
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Understanding the latent space

Background is in orange, signal in blue — there is discrimination potential in the
latent space!
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Dark Machines
An international group of researchers *(not just LHC experimentalists!) using machine
learning to go after Dark Matter in various forms:

unsupervised collider searches (anomaly detection)

high-dimensional sampling

generative models

strong lensing

... [your project here]

Expect the �rst community white paper on event-level anomaly detection very
soon! (including many more interesting models and approaches I didn't have time to cover here)

darkmachines.org

See Section 23 of arXiv:2002.12220 66 / 66

https://www.darkmachines.org/
https://arxiv.org/abs/2002.12220


Thank you.



Questions?
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