King's College London - EPAP Seminar 15.03.2021

Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, F-75006 Paris, F-75006 Paris, Frances

Machine Learning

Swiss National Science Foundation Fellow

Enavitational-Wave Gravitational-Wave Enhancing Science with Machine Learning

Leïla Haegel

Astroparticles and Cosmology Laboratory, University of Paris Swiss National Science Foundation fellow

- A primer on GW astrophysics \circ
- Ground-based interferometers \circ
- Detection and analysis $\mathbf O$
- Examples of physics results $\mathsf O$

‣ **GW physics** ‣ **Machine learning applications**

- Why ML?
- Characterisation of detector noise \circ
- Detection of astrophysical signals $\mathsf O$
- GW modelling $\mathsf O$
- Estimation of the GW sources \overline{O} parameters

GW physics

A primer on GW astrophysics

- Ground-based interferometers
- Detection and analysis
- Examples of physics results

Gravitational waves primer 1/2

‣ **A prediction from GR:** linearised Einstein Equation for accelerating masses:

$$
G_{\mu\nu} = 8\pi T_{\mu\nu} \longrightarrow \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) T_{\mu\nu} = 0
$$

Propagation: GW modify the spacetime according to:

$$
ds^{2} = -c \, dt^{2} + [1 - h(z \pm ct)] \, dx^{2} + [1 - h(z \pm ct)] \, dy^{2} + dz^{2}
$$
\n
$$
f
$$
\n
$$
GW \, deformation \qquad transverse \, waves
$$

‣ **Radiation mode:** GW are tensor perturbation, the spacetime stretch is quadrupolar

Energy conservation \leftrightarrow no monopole radiation Momentum conservation \leftrightarrow no dipole radiation

Gravitational waves primer 2/2

- ▸ **Polarisations:** GW have 2 polarisations, h_+ and $h_×$
- ‣ **Strain:** is the fractional change in distance between two points when a GW passes through:

Δ*L L* = 1 2 $h_{xx}(0,ct)$

[Figure by Alexandre Le Tiec](https://www.researchgate.net/publication/305322252_Theory_of_Gravitational_Waves)

Gravitational waves sources

‣ **Strain:** follows a wave equation:

 $h(t) = A(t) \sin(\omega(t) t)$

‣ **Amplitude:** decreases from the source as the GW propagates in spacetime

Credit: SSU EPO/Aurore Simonnet

LIGO-Virgo-KAGRA

GW physics

A primer on GW astrophysics

Ground-based interferometers

- Detection and analysis
- Examples of physics results
- ‣ The variation of space-time interval is measured with light interferometry.
- A light beam is divided in two beams travelling along orthogonal arms.
- ‣ Mirrors in the end of the arms reflect the beams back to a **photodetector**.
- ‣ If no gravitational wave passes through, the arm length remains the same and the interference pattern is the sum of the splitted electromagnetic waves.

Gravitational waves detection

- ‣ The variation of space-time interval is measured with light interferometry.
- A light beam is divided in two beams travelling along orthogonal arms.
- ‣ Mirrors in the end of the arms reflect the beams back to a **photodetector**.
- ‣ If a gravitational wave passes through, the arm length is different and the interference pattern is distorted.

Gravitational waves observatories

LIGO-Virgo sensitivities

- \rightarrow Ground-based light interferometers are sensitive to the frequency range 10 10³ Hz
- Signals entering the detection range are coalescence of compact binaries (stellarmass black holes or neutron stars) and possibly pulsars

GW physics

- A primer on GW astrophysics
- Ground-based interferometers

Detection and analysis

Examples of physics results

GW detection

- Detection range: during O3 run
- ‣ Different type of searches:
	- 4 modelled searches pipelines
	- 2 unmodelled searches pipelines

- ‣ Database automatically updated:
	- [GraceDB](https://gracedb.ligo.org/) contains low-latency information about the event
	- In case of possible neutron star, alert sent to satellites and telescopes to search for electromagnetic counterpart

- ‣ Black holes / neutron stars orbiting in binaries emit gravitational waves.
- ‣ When the distance between the objects is large, the inspiral waveform has a low frequency, low amplitude.
- ‣ While they get closer, frequency and amplitude increase up to the merging.
- **I** The final remnant relax during ringdown, when the wave is dumped.

[LVC, arXiv:1602.03837](https://arxiv.org/abs/1602.03837)

GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW rely on **matched filtering** to evaluate the correlation between the signal template *h* and the data *s*

[Source: L. Candonati](http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf)

GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW rely on **matched filtering** to evaluate the correlation between the signal template *h* and the data *s*

$$
z(t) = 4 \int h^*(f) \ s(f) \ \exp(2\pi i f t) \ df
$$

[Source: L. Candonati](http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf)

GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW rely on **matched filtering** to evaluate the correlation between the signal template *h* and the data *s*

$$
z(t) = 4 \int h^*(f) s(f) \exp(2\pi i f t) df
$$

[Source: L. Candonati](http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf)

GW parameter estimation

- ‣ The posterior probabilities of the parameters of the source are estimated with Markov chains sampling methods (Nested sampling, MCMC).
- **‣** 15 parameters minimum to describe a binary system:
	- 2 masses
	- 2 spin magnitudes
	- 2 angles for each spin
	- Reference time
	- Orbital phase at reference time
	- Luminosity distance
	- Right ascension & declination
	- Inclination angle
	- Polarisation angle

GW physics

- A primer on GW astrophysics
- Ground-based interferometers
- Detection and analysis
- **Examples of physics results**

GW astrophysics

[LVC, arXiv:2010.14533](https://arxiv.org/pdf/2010.14533.pdf)

‣ Astrophysical distribution: presence of features compare to the star power-law distribution

▶ Neutron stars binary: the presence of an electromagnetic counterpart enables to measure the Hubble constant

GW fundamental physics

[LVC, arXiv:2010.14529](https://arxiv.org/pdf/2010.14529.pdf)

GW propagation: constraints on the mass of the graviton and other alternative theories of gravitation

GW ringdown (end of signal): the presence of higher harmonics or echoes can help testing the nature of the black holes as sources of GW

Leïla Haegel, APC Laboratory KCL EPAP Seminar 15.03.2021 21

Machine learning applications

Why ML?

- Characterisation of detector noise
- Detection of astrophysical signals \circ
- GW modelling
- Estimation of the GW sources \circ parameters

Machine learning usefulness

- \rightarrow Small signals: the amplitude of the signal is \sim the amplitude of the noise
- ‣ Complex system: the Einstein Equations are non-linear and the physics of the strong-field regime is highly complex
- High dimensionality: from the detectors channels to the binary characterisation, the systems need many parameters to be described
- **Examputationally intensive:** solving Einstein Equations require numerical relativity simulations on superclusters, sampling the source parameters probabilities can take weeks with distributed computing
- ▶ Review article: Enhancing Gravitational-Wave Science with Machine Learning, [Machine Learning: Science and Technology,](https://iopscience.iop.org/article/10.1088/2632-2153/abb93a) [arXiv:2005.03745](https://arxiv.org/abs/2005.03745)

Machine learning applications

- Why ML?
- **Characterisation of detector noise** \circ
- Detection of astrophysical signals $\mathsf O$
- GW modelling \circ
- Estimation of the GW sources parameters

Detector glitches

- ‣ Glitches: Short-lived non-stationary and nonlinear transients signals of environmental / instrumental origin
- ‣ Characterisation:
	- Origin needs to be understood to understand the noise of the detectors
	- Glitches can occur at the same time than signals and need to be subtracted
	- Several different morphologies

Characterisation of glitches with CNN

▶ Spectrograms: time/frequency maps provides 2D representation of glitches analogous to images

‣ Convoluted Neural Networks:

- CNN on simulated glitches offer 99% classification efficiency
- Supervised learning where categories are based on morphological features

[Razzano & Cuoco, arXiv:1803.09933](https://arxiv.org/pdf/1803.09933.pdf)

 (f)

Convolutional (depth=16) Convolutional (depth=32) MaxPooling (2x2) Dropout (0.25) Convolutional (depth=64) MaxPooling (2x2) Convolutional (depth=64) MaxPooling (2x2) Dropout (0.25) Convolutional (depth=128) MaxPooling (2x2) Convolutional (depth=128) MaxPooling (2x2) Dropout (0.25) Fully Connected (N=512) Dropout (0.25)

Fully Connected (N=N_{class})

Human-based glitch tagging

[GravitySpy](https://www.zooniverse.org/projects/zooniverse/gravity-spy): citizen science projet where anybody can tag glitches from LIGO and Virgo. Create a dataset for next ML application of glitch characterisation.

GravitySpy and machine learning

▶ CNN efficiency: training on citizen-tagged events show > 0.9 correct tagging except for "Paired Doves" and "Wandering Lines" categories.

Machine learning applications

- Why ML?
- Characterisation of detector noise \circ

Detection of astrophysical signals \circ

- GW modelling \circ
- Estimation of the GW sources parameters

LIGO-Virgo auxiliary channels

▶ Auxiliary channels: a plethora of additional detectors monitoring the interferometers

[Kwee et al, Optics Express Vol. 20, Issue 10, pp. 10617-10634 \(2012\)](https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-10-10617&id=232860) [Martynov et al, arXiv:1604.00439](https://arxiv.org/pdf/1604.00439.pdf)

Identify astrophysical signals from noise

- **Glitches**: can be identified from astrophysical signals with the auxiliary channels
- ‣ Comparison of ML algorithms:
	- Artificial Neural Network
	- Support Vector Machines
	- Random Forest
	- Ordered Veto List (correlation of glitches in GW / auxiliary channel with hierarchical ordering)

[Biswas et al, arXiv:1303.6984](https://arxiv.org/pdf/1303.6984.pdf)

Using public data for electromagnetic alerts

• Alerts: are sent to multimessenger facilities when event false alarm rate is large. Can be retracted after further studies if the event is noise.

- Use public data only as inputs (sky localisation, distance, detector network)
- Correctly classify events from noise is 93% of cases
- Support the decision to follow GW events with telescopes

Machine learning applications

- Why ML?
- Characterisation of detector noise \circ
- Detection of astrophysical signals \circ
- **GW modelling** \circ
- Estimation of the GW sources parameters \circ

The necessity of GW modelling

- Necessity of a template bank of GW signals: matched filtering algorithms and modelled search need to compare the data stream to templates
- ‣ GW modelling: approximate signals as numerical relativity simulations are too computationally intensive

Predicting the remnant parameters

- Final black holes properties: are important for GW modelling (final mass, spin)
- ▶ Spinning black holes: induce precession in the binary, high-dimensional (7 parameters) system to model, traditionally approximated
- ML applications: neural networks and GP can fully take into account the spin effects and correct biases in the prediction

Interpolating numerical relativity simulations

- ▶ Gaussian Process: can be trained on numerical simulations to generate GW template
- **Interpolation**: in the parameter space of the simulations
- **Errors**: of the GP training can be naturally propagated into parameter inference

Machine learning applications

- Why ML?
- Characterisation of detector noise
- Detection of astrophysical signals
- GW modelling
- **Estimation of the GW sources parameters**

Estimation of GW source parameters

- **Markov chain sampling**: slow process (up to weeks)
- **Conditional variational auto-encoder (CVAE):** minimize the cross-entropy between the true Bayesian posterior and an approximate Bayesian posterior produced by the neural network

Estimation of GW source parameters

• Normalizing flow: invertible transformations to transform a simple initial distribution (multivariate Gaussian) into a more complex target distribution (posterior probability density of source parameters)

Quick estimate: both methods provide estimates consistent with MCMC in a much reduced time $($ \sim 1 mn)

Thank you for your attention

leila.haegel@apc.in2p3.fr

