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Gravitational waves primer 1/2 

propagate at speed of light transverse waves

‣ Propagation: GW modify the spacetime according to:

ds2 = − c dt2 + [1 − h(z ± ct)] dx2 + [1 − h(z ± ct)] dy2 + dz2

‣ Radiation mode: GW are tensor perturbation,  
the spacetime stretch is quadrupolar

Energy conservation ↔  no monopole radiation   
Momentum conservation  ↔  no dipole radiation

Im
age by W

ayne H
u

‣ A prediction from GR: linearised Einstein Equation for accelerating masses:

Gμν = 8πTμν (∇2 −
1
c2

∂2

∂t2 ) Tμν = 0

GW deformation

http://background.uchicago.edu/~whu/polar/webversion/node6.html
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Gravitational waves primer 2/2

‣ Polarisations: GW have 2 polarisations,  and  h+ h×

‣ Strain: is the fractional change in distance 
between two points when a GW passes through: 

ΔL
L

=
1
2

hxx(0,ct)

‣ Deformation: 

Figure by Alexandre Le Tiec

https://www.researchgate.net/publication/305322252_Theory_of_Gravitational_Waves
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Gravitational waves sources 

Credit: SSU EPO/Aurore Simonnet

‣ Strain: follows a wave equation: 

h(t) = A(t) sin(ω(t) t)

A(t, d) = 
A(t, d0) 

d
‣ Amplitude: decreases from  

the source as the GW 
propagates in spacetime

LIGO-Virgo-KAGRA
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Gravitational waves detection 

‣ The variation of space-time interval 
is measured with light interferometry.

‣ A light beam is divided in two beams  
travelling along orthogonal arms.

‣ Mirrors in the end of the arms reflect 
the beams back to a photodetector.

‣ If no gravitational wave passes through, 
the arm length remains the same and  
the interference pattern is the sum  
of the splitted electromagnetic waves. 

Source: The Econom
ist

https://www.economist.com/science-and-technology/2019/08/22/gravitational-astronomy-proves-its-maturity
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Gravitational waves detection 

‣ The variation of space-time interval 
is measured with light interferometry.

‣ A light beam is divided in two beams  
travelling along orthogonal arms.

‣ Mirrors in the end of the arms reflect 
the beams back to a photodetector.

‣ If a gravitational wave passes through, 
the arm length is different and the  
interference pattern is distorted. 

Source: The Econom
ist

https://www.economist.com/science-and-technology/2019/08/22/gravitational-astronomy-proves-its-maturity
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Gravitational waves observatories 

LIGO Hanford LIGO Livingston Virgo KAGRA

https://www.economist.com/science-and-technology/2019/08/22/gravitational-astronomy-proves-its-maturity
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LIGO-Virgo sensitivities

‣ Ground-based light interferometers are sensitive to the frequency range 10 - 103 Hz

‣ Signals entering the detection range are coalescence of compact binaries (stellar-
mass black holes or neutron stars) and possibly pulsars

O3a sensitivity

https://dcc.ligo.org/public/0166/P2000061/010/o3a_catalog.pdf


GW physics

A primer on GW astrophysics 

Ground-based interferometers 

Detection and analysis 

Examples of physics results



KCL EPAP Seminar 15.03.2021Leïla Haegel, APC Laboratory 13

GW detection

 

‣ Detection range: during O3 run 

‣ Different type of searches:  
- 4 modelled searches pipelines 
- 2 unmodelled searches pipelines 
 

‣ Database automatically updated:  
- GraceDB contains low-latency  
  information about the event 
- In case of possible neutron star, 
  alert sent to satellites and telescopes 
  to search for electromagnetic counterpart

https://dcc.ligo.org/public/0166/P2000061/010/o3a_catalog.pdf
https://gracedb.ligo.org/
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GW signals from binary systems of compact objects

‣ Black holes / neutron stars  
orbiting in binaries emit  
gravitational waves.  

‣ When the distance between  
the objects is large, the  
inspiral waveform has a low  
frequency, low amplitude. 

‣ While they get closer,  
frequency and amplitude  
increase up to the merging. 

‣ The final remnant relax  
during ringdown, when the  
wave is dumped.

 

LVC, arXiv:1602.03837

https://dcc.ligo.org/public/0166/P2000061/010/o3a_catalog.pdf
https://arxiv.org/abs/1602.03837
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GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW 
rely on matched filtering to evaluate the correlation between the signal template 
 and the data h s

Source: L. Candonati

z(t) = 4∫ h*( f ) s( f ) exp(2πift) df

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
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GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW 
rely on matched filtering to evaluate the correlation between the signal template 
 and the data h s

Source: L. Candonati

z(t) = 4∫ h*( f ) s( f ) exp(2πift) df
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GW analysis with matched filtering

‣ Due to the low amplitude of the signal from binary systems, the analysis of the GW 
rely on matched filtering to evaluate the correlation between the signal template 
 and the data h s

Source: L. Candonati

z(t) = 4∫ h*( f ) s( f ) exp(2πift) df

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
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GW parameter estimation

‣ The posterior probabilities of the parameters of the source are estimated with 
Markov chains sampling methods (Nested sampling, MCMC).

- 2 masses 
- 2 spin magnitudes 
- 2 angles for each spin 
- Reference time 
- Orbital phase at reference time 
- Luminosity distance 
- Right ascension & declination 
- Inclination angle 
- Polarisation angle

‣ 15 parameters minimum to describe a binary system:
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GW astrophysics

‣ Astrophysical distribution: presence of 
features compare to the star power-law 
distribution

LVC, arXiv:2010.14533

‣ Neutron stars binary: the presence of an 
electromagnetic counterpart enables to 
measure the Hubble constant

LVC, arXiv:1908.06060

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14533.pdf
https://arxiv.org/pdf/1908.06060.pdf
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GW fundamental physics

‣ GW propagation: constraints on the mass 
of the graviton and other alternative 
theories of gravitation

LVC, arXiv:2010.14529

‣ GW ringdown (end of signal): the 
presence of higher harmonics or echoes 
can help testing the nature of the black 
holes as sources of GW

Cardoso & Pani, arxiv:1709.01525

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1709.01525.pdf
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Machine learning usefulness 

‣ Small signals: the amplitude of the signal is ~ the amplitude of the noise

‣ Complex system: the Einstein Equations are non-linear and the physics of the 
strong-field regime is highly complex

‣ High dimensionality: from the detectors channels to the binary characterisation, 
the systems need many parameters to be described

‣ Computationally intensive: solving Einstein Equations require numerical relativity 
simulations on superclusters, sampling the source parameters probabilities can 
take weeks with distributed computing

‣ Review article: Enhancing Gravitational-Wave Science with Machine Learning, 
Machine Learning: Science and Technology, arXiv:2005.03745

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://iopscience.iop.org/article/10.1088/2632-2153/abb93a
https://arxiv.org/abs/2005.03745
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Detector glitches
 

‣ Glitches: Short-lived non-stationary and nonlinear transients signals of environmental / 
instrumental origin  

‣ Characterisation:

- Origin needs to be understood 
to understand the noise of the  
detectors 

- Glitches can occur at the same  
time than signals and need to be 
subtracted 

- Several different morphologies 

LVC, arXiv:2010.14529

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/2010.14529.pdf
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Characterisation of glitches with CNN
 

‣ Spectrograms: time/frequency maps provides 2D representation of glitches analogous 
to images

‣ Convoluted Neural Networks:

- CNN on simulated glitches offer 99% 
classification efficiency 

- Supervised learning where categories are 
based on morphological features 

Razzano & Cuoco, arXiv:1803.09933

https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1803.09933.pdf
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Human-based glitch tagging
 

‣ GravitySpy: citizen science projet where anybody can tag glitches from LIGO and Virgo.  
Create a dataset for next ML application of glitch characterisation. 

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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GravitySpy and machine learning
 

‣ CNN efficiency: training on citizen-tagged events show >0.9 correct tagging except 
for “Paired Doves” and “Wandering Lines” categories.

Zevin et al, arXiv:1611.04596

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1611.04596.pdf
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LIGO-Virgo auxiliary channels
 

‣ Auxiliary channels: a plethora of additional detectors monitoring the interferometers 

Martynov et al, arXiv:1604.00439Kwee et al, Optics Express Vol. 20, Issue 10, pp. 10617-10634 (2012)

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1604.00439.pdf
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-10-10617&id=232860
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Identify astrophysical signals from noise
 

‣ Glitches: can be identified from astrophysical signals with the auxiliary channels

Biswas et al, arXiv:1303.6984

‣ Comparison of ML algorithms:

- Artificial Neural Network 

- Support Vector Machines 

- Random Forest 

- Ordered Veto List 
(correlation of glitches in GW /
auxiliary channel with 
hierarchical ordering) 

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1303.6984.pdf
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Using public data for electromagnetic aler ts
 

‣ Alerts: are sent to multimessenger facilities when event false alarm rate is large.  
Can be retracted after further studies if the event is noise.

‣ CNN classifiers:

- Use public data only as inputs 
(sky localisation, distance, 
detector network)

Cabero et al, 2010.11829

- Correctly classify events from 
noise is 93% of cases

- Support the decision to follow 
GW events with telescopes

http://gravity.psu.edu/events/neutron_stars/talks/candonati.pdf
https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/2010.11829.pdf
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The necessity of GW modelling 
 

‣ Necessity of a template bank of GW signals: matched filtering algorithms and 
modelled search need to compare the data stream to templates 

‣ GW modelling: approximate signals as numerical relativity simulations are too 
computationally intensive

inspiral, weak field
can be modelled with post-Newtonian 

formalism or effective one-body approach

can be modelled as 
a sum of damped 
sin waves

requires 
numerical 
relativity

merger,  
strong field

ringdown, strong 
to weak field

Source: Sound of Spacetime

https://arxiv.org/pdf/2010.14529.pdf
https://www.soundsofspacetime.org/detection.html
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Predicting the remnant parameters
 

‣ Final black holes properties: are important for GW modelling (final mass, spin) 

‣ Spinning black holes: induce precession in the binary, high-dimensional (7 
parameters) system to model, traditionally approximated 

‣ ML applications: neural networks and GP can fully take into account the spin effects 
and correct biases in the prediction 

Varma et al, arXiv:1809.09125

Haegel & Husa, arXiv:1911.01496

https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1809.09125.pdf
https://arxiv.org/pdf/1911.01496.pdf
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Interpolating numerical relativity simulations
 

‣ Gaussian Process: can be trained on numerical simulations to generate GW template 

‣ Interpolation: in the parameter space of the simulations  

‣ Errors: of the GP training can be naturally propagated into parameter inference  

Varma et al, arXiv:1809.09125

https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1809.09125.pdf
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Estimation of GW source parameters
 

Gabbard et al, arXiv:1909.06296

‣ Markov chain sampling: slow process (up to weeks) 

‣ Conditional variational auto-encoder (CVAE): minimize the cross-entropy between 
the true Bayesian posterior and an approximate Bayesian posterior produced by the 
neural network 

https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1909.06296.pdf


KCL EPAP Seminar 15.03.2021Leïla Haegel, APC Laboratory 39

Estimation of GW source parameters
 

Green et al, arXiv:2002.07656

‣ Normalizing flow: invertible transformations to transform a simple initial distribution 
(multivariate Gaussian) into a more complex target distribution (posterior probability 
density of source parameters)

‣ Quick estimate: both methods 
provide estimates consistent 
with MCMC in a much reduced 
time (~1 mn)

https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/2002.07656.pdf


Thank you for your attention

leila.haegel@apc.in2p3.fr


