

DarkSide-LowMass: feasibility for low mass dark matter discovery at Boulby

Darren Price

on behalf of the DarkSide-UK community Boulby Underground Laboratory Development Feasibility Meeting February 26th 2021

DarkSide a staged programme to discover dark matter (DM) particles scattering on Argon (UAr) nuclei Ultimate goal of kt-scale global Ar dark matter observatory **DarkSide** 2023-2028 DS proto-1T DarkSide-20k 2020 +ARGO Optical & EM barrie nVeto Global Argon Dark Matter Collaboration DS 300 t proto-0 2019-20 DarkSide-50 50 tonnes (40 t fiducial) 1 tonne 50 kg 10⁻¹ WIMP mass [TeV/c²]

arkSide-

LowMass:

Boulbv

Feasibility

Darren Price

Feb

26th 2021

DarkSide a staged programme to discover dark matter (DM) particles scattering on Argon (UAr) nuclei

Ultimate goal of kt-scale global Ar dark matter observatory

DarkSide 2023—2028

DarkSide-50 demonstrated access to low mass DM region possible with just ionisation signal:

RGC

DarkSide a staged programme to discover dark matter (DM) particles scattering on Argon (UAr) nuclei Ultimate goal of kt-scale global Ar dark matter observatory **DarkSide** 2023-2028 DS proto-1T DarkSide-20k 2020 +ARGO Optical & EM barrie nVeto Global Argon Dark Matter Collaboration DS 300 t proto-0 2019-20 DarkSide-50 50 tonnes (40 t fiducial) 1 tonne DarkSide-LowMass 1 tonne

50 kg

10⁻¹ WIMP mass [TeV/c²] **Boulby?**

What is DarkSide-LowMass?

5

Dedicated tonne-scale TPC with 'S2' signal from electroluminescence signal from ionisation electrons from DM-nucleon scatter

- Instrumented with large-area cryogenic high-efficiency ultra-low radioactivity SiPMs
- Enhanced sensitivity to low mass DM; probes neutrino floor

What is DarkSide-LowMass?

Dedicated tonne-scale TPC with 'S2' signal from electroluminescence signal from ionisation electrons from DM-nucleon scatter

- Instrumented with large-area cryogenic high-efficiency ultra-low radioactivity SiPMs
- Enhanced sensitivity to low mass DM; probes neutrino floor
- Pushing to the sub-GeV region is interesting in the STFC landscape; synergies with collider physics programme and complementary to others:

What is DarkSide-LowMass?

DarkSide-LowMass: **Dedicated tonne-scale TPC with 'S2' signal from electroluminescence** Bou -easibility **Darren Price** Feb 26th 2021

Instrumented with large-area cryogenic high-efficiency ultra-low radioactivity SiPMs

signal from ionisation electrons from DM-nucleon scatter

- Enhanced sensitivity to low mass DM; probes neutrino floor
- Pushing to the sub-GeV region is interesting in the STFC landscape; synergies with collider physics programme and complementary to others:

First phase: Ultrapure UAr (1 µBq/kg) and SiPMs (1 mBq/PDM) building on STFC-funded UK R&D **Potential second phase:** doped LAr (Xe, allene, He) for reach and extra sensitivity

DarkSide-LowMass critically relies on:

- Reduction of Ar radioactivity to reach I μBq/kg (with UAr and Aria distillation column)
- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as σ[n]>10²⁴ × σ[DM])

DarkSide-LowMass critically relies on:

• **Reduction of Ar radioactivity to reach I μBq/kg** (with UAr and Aria distillation column)

- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as σ[n]>10²⁴ × σ[DM])

DarkSide-LowMass critically relies on:

- Reduction of Ar radioactivity to reach I μBq/kg (with UAr and Aria distillation column)
- SiPM radioactivity reduction to I mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as σ[n]>10²⁴ × σ[DM])

Reaching DarkSide-LowMass with SiPM radioactivity reductions

Move from PMTs→SiPMs

Staged Si detector integration improvements

Programme of development STFC funded in the UK from 2021

Programme of development STFC funded in the UK from 2021

Programme of development STFC funded in the UK from 2021

Direct detection in Silicon with DarkSide-LowMass

Low-radioactivity DarkSide-LowMass PDMs as a DM-Si target at Boulby?

- Target searches beyond WIMPs at keV—GeV scale (nuclear or electron recoils)
- Highly sensitive: background-free, I kg/yr of exposure (~400 PDMs) gives world-leading sensitivity
- Dependent on PDM radioactivity reductions by up to an order of magnitude

DarkSide-LowMass critically relies on:

- Reduction of Ar radioactivity to reach I μBq/kg (with UAr and Aria distillation column)
- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as σ[n]>10²⁴ × σ[DM])

Getting to DarkSide-LowMass: neutron veto

DarkSide-LowMass critically relies on:

- Reduction of Ar radioactivity to reach Ι μBq/kg (with UAr and Aria distillation column)
- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as σ[n]>10²⁴ × σ[DM])

WATCHMAN at Boulby:

Use detector in 2026+ as 6000t Gd-doped water instrumented neutron veto (and shield against external radioactivity) [same setup as used for DarkSide-50]

Getting to DarkSide-LowMass: neutron veto

DarkSide-LowMass critically relies on:

- Reduction of Ar radioactivity to reach Ι μBq/kg (with UAr and Aria distillation column)
- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (efficient as $\sigma[n] > 10^{24} \times \sigma[DM]$)

WATCHMAN at Boulby:

Use detector in 2026+ as 6000t Gd-doped water instrumented neutron veto (and shield against external radioactivity) [same setup as used for DarkSide-50]

- DarkSide-LM TPC cylinder Im in radius and I.5 m tall Significant distance between TPC and veto walls improve shielding against untagged muons creating cosmogenic activation.
- Could be deployed through central top hatch planned for WATCHMAN
- Synergies with WATCHMAN programme 2026+ DarkSide-LM will have access to CEvNS neutrino floor. Links to non-proliferation programme.

DarkSide-LowMass requirements at Boulby

Location:

Needs to be co-located with AIT-WATCHMAN (!)

Depth:

With neutron veto, Ikm depth sufficient for control of external bkg

Clean room:

(~4m x 3m) with Radon abatement at 100 mBq/m³ level to assemble detector

Power:

Requirements for electronics ~0.2 kW; cryogenic system needs will need to be calculated

Other needs:

- Cryogenic argon vent line to handle catastrophic contact between LAr and (room temperature) liquid target of WATCHMAN
- Hook + need clearance of 3m above WATCHMAN to crane in detector

Operation of DarkSide-LowMass inside WATCHMAN at Boulby Laboratory ideal and would have world-leading discovery potential in a compelling and less-explored region of dark matter parameter space.

Use of the AIT facility beyond WATCHMAN to host DarkSide-LowMass is consistent with the foreseen timescale of the DarkSide international collaboration to field a dedicated low-mass instrument.

- Places UK in leading role for sensor production and as host laboratory
- Hosting and operation positions Boulby well for future related projects at scale
- Builds on new STFC-funded DarkSide project and aligned with UK DM strategic review priorities

