

AIT Beyond NEO

Matthew Malek (on behalf of the WATCHMAN Scientific Collaboration)

Boulby Feasibility Study Community Meeting 26th February 2021

Advanced Instrumentation Testbed

Advanced Instrumentation Testbed

AIT evolved as an expansion from WATCHMAN, an applied antineutrino physics project to demonstrate remote monitoring of nuclear reactors for non-proliferation objectives.

The primary sponsor is US National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation.

Baseline design includes a cylindrical cavern measuring ~25m diameter, ~30m height, with clean room lab space, etc.

Neutrino Experiment One (NEO)

Baseline design includes:

- Kilotonne-scale fiducial mass
- 0.1% Gd-loaded water or water-based liquid scintillator
- ~3600 Hamamatsu 10" PMTs with:
 - High quantum efficiency (~30%)
 - Low radioactivity (esp. U and Th)
 - 20% photocathode coverage
- Active veto region (~1.5 metre)
- Located at 1100 metre level

Non-Proliferation Scenarios

Discovery Scenarios (Project Goal 1):

- **Case 1:** Determine whether any reactor is present.
- **Case 2:** Knowing that one reactor is operating, determine that a second reactor has turned on.
- Verification Scenario: (Project Goal 2)
- Case 3: Confirm operational status with or without prior knowledge of both reactor cycles.

The baseline AIT design is rated for a minimum 15-year lifetime. The NEO mission should be completed in 1 - 2 years of operation.

Thus, a sensitivity study was commissioned to show physics potential for AIT after the conclusion of NEO.

Supernova Model Discrimination

Supernova model discrimination using Gd-loaded water. Left shows radius of 90% model discrimination, based on tank size. Right shows sensitivity to canonical SN burst, also with tank size.

26 Feb 2021

CNO-cycle Solar Neutrinos

With the first announcement of a CNO-cycle solar neutrino measurement last year, by Borexino, we have looked AIT sensitivity using water-based liquid scintillator (1% and 3%) as a target.

Relative to Borexino:

Advantages:

• (Much) bigger

Challenges:

- Cleanliness
- (Much) lower light yield

Preliminary results show sensitivity equals Borexino in ~5 years. Possible to do better if we use pure scintillator (instead of WbLS).

26 Feb 2021

Geo (anti) neutrinos

Fills considered with WbLS as well as Gd-loaded WbLS. Results from a 10-year exposure are:

For baseline design, 3σ detection can be achieved in 5 years with a 3% WbLS fill and 20% photocoverage. Gd-loading improves this sensitivity (as does increased photocoverage).

26 Feb 2021

Neutrinoless Double Beta Decay

This study used **pure liquid scintillator** (in inner vessel) <u>not</u> WbLS. \rightarrow very much AIT beyond the scope of NEO

For baseline detector size (20m tank):

5 year exposure with LS can cover full inverted ordering region Requires additional photocoverage (ideally 40%)

26 Feb 2021

Additional Possibilities

Physics topics proposed but not yet studied include:

- Sensitivity to neutrino mass ordering from supernova burst
- Supernova pointing accuracy
- Sensitivity to supernova relic neutrinos (DSNB)
- Invisible neutron decay to three neutrinos

In addition, we have received expressions of interest for use of the AIT facility from outside of the existing WATCHMAN Scientific Collaboration, including from:

- DarkSide-LM (see earlier talk from Darren Price)
- CYGNUS

N.B. Current baseline AIT has been developed to 50% conceptual design level, and exceeds current project budget. At present, value engineering exercises are in progress, as well as investigating options for procuring additional funding.