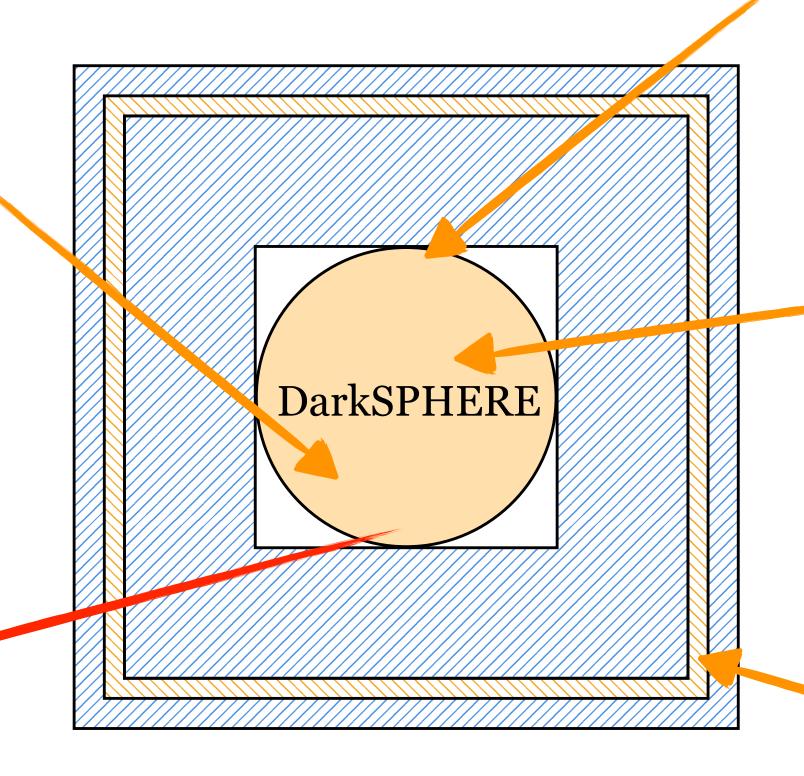


DarkSPHERE and Electroforming in Boulby

I. Katsioulas¹, P. Knights^{1,2}, I. Manthos¹, J. Matthews¹, K. Nikolopoulos¹, T. Neep¹, R. Ward¹

¹University of Birmingham, UK

²IRFU, CEA Saclay, France


DarkSPHERE

Operation with 5 bar He:C₄H₁₀ (90%:10%) (27 kg)

→Large mass of light targets

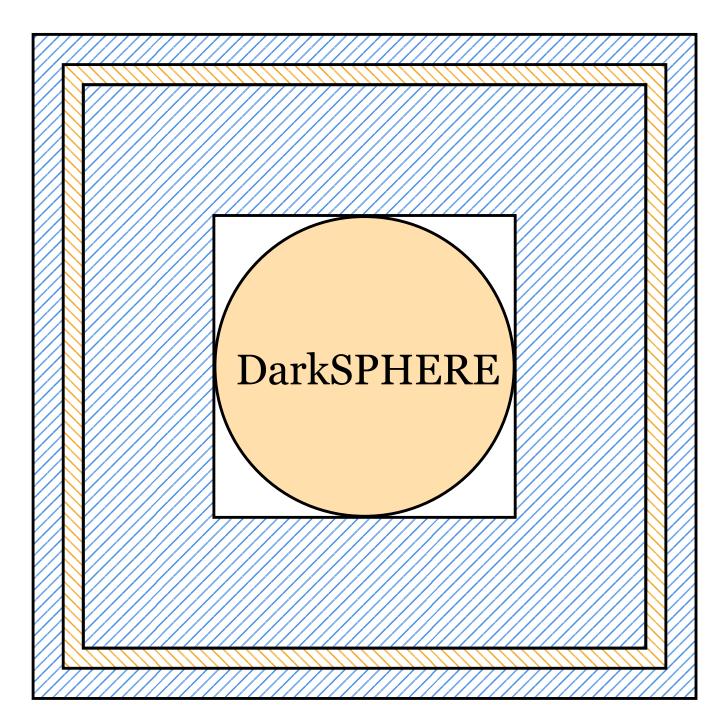
Multi-physics potential

- Dark Matter search
- 0v2β decay search
- CEvNs physics

Ø3 m fully undergroundelectroformed detector

Multi-anode readout with potential for individual anode read-out (TPC-like mode)

→Studying in <u>simulation</u>


Would like a water shield 3.5 m (footprint: 10x10x10 m³⁾

If space not available: 1.3 m water

- + 0.2 m lead +0.3 m water shield
 - →Fits in current lab

DarkSPHERE

Ø3 m fully undergroundelectroformed detector

- Timeframe: 5 years (design, construction) and then exploitation
- Footprint: 10x10x10(7x7x7) m³ + workspace, gas bottles etc. (in close proximity)
- Depth: Either depth works, but require cleanroom
- Considerations:
 - Containment of water in case of leak
 - Proposed gas is below flammability limit
 - Good ventilation required
 - HV (<10kV detector bias)
 - Pressure certification
 - Shielding cover gas N2
- No underground machining envisaged
 - Detector EF as one piece, with flange built in
- Electroforming will take ~ 1-1.5 year

- Active muon veto desirable, but not essential
- Cost: ~2 M £ (inc. personnel) roughly equally shared over 5 years

Copper as a Construction Material

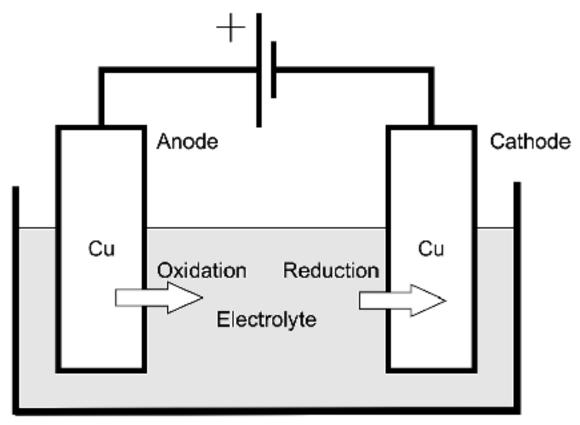
- Copper is a common construction material for rare event experiments:
 - Strong enough to build gas vessels
 - Commercially available at high purity
 - Low cost
 - No long-lived radio-isotopes
 - □ Longest 67 Cu $t_{1/2}$ = 62 hours
 - Possibility to electrochemically purify
 - 'electrowinning'

Experiments which use/will use copper in detector:

DAMIC

- Majorana
- SuperCDMS
- DARWIN
- DarkSide-20k
- NEWS-G

· ...


nEXO

Electroforming

- Electrolysis: oxidation and reduction reactions
 - lons reduced at cathode building up material
- Current supplied to drive reactions
- Mass deposited proportional to current supplied
- Copper has higher reduction potential than Uranium, Thorium, Lead...
 - Copper refined during electroforming
- Can be used to coat materials or completely form them (plating to a mandrel)

EF Radiopurity and Assay Techniques

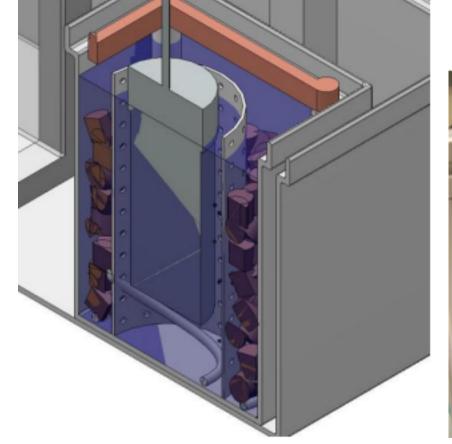
ICP-MS Assay (Majorana Demonstrator + NEWS-G)

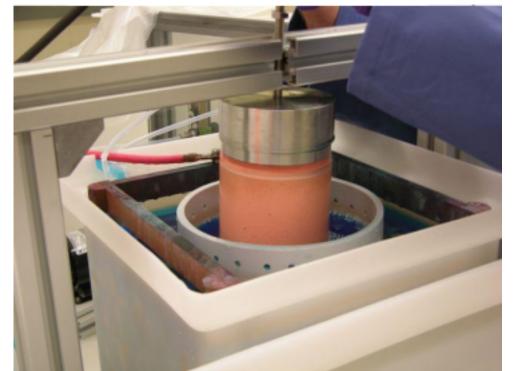
	Underground	elec	troforr	ned	copper
--	-------------	------	---------	-----	--------

- Cosmogenic activation minimised
- Minimised ²²²Rn contamination found with commercial coppers (Lowest in Boulby!)
- Generally assayed with
 - •ICP-MS
 - XIA UltraLo-1800 (Available in Boulby!)
- Electroformed copper used for sample trays of XIA UltraLo-1800
- SNOLAB has invested in ECUME facility for electroforming
 - Worlds largest underground EF facility
- Canfanc have Copper Electroforming Service (surface)
- Boulby can capitalise on R&D/experience for NEWS-G/ECUME

P Knights - Boulby Feasibility Study Meeting 2021

Copper Type	²³² Th [<i>µBq/kg</i>]	²³⁸ U [<i>µBq/kg</i>]
C10100 (99.99% OFHC)	1.2±0.3	2.5±0.7
C10100 (Machined)	8.7±1.6	27.9±1.9
Electroformed	<0.12	<0.10
Electroformed (Machined)	0.5±.1	0.50±0.03
Electroplated (NEWS-G)	<0.58 <0.24	<0.26 <0.11


NEWS-G: NIMA 988 (2021) 164844


XIA UltraL	10.1063/1.5018989	
Sample	²¹⁰ Pb contamination (mBq/kg)	²¹⁰ Po contamination (mBq/kg)
OFC#1 (C1020) (MMC)	40±8	47±21
OFC#2 (C1020) (MMC)	20±6	33±14
OFC#3 (C1020) (MMC)	27±7	$(1.6\pm0.3)\times10^{2}$
OFC#4 (C1020) (MMC)	23±8	$(2.2\pm0.4)\times10^{2}$
OFC#5 (C1020) (SH copper products)	17±6	44±18
OFC#6 (C1020) (SH copper products)	27±8	24±17
OFC (class1) (SH copper products)	36±13	38±3
Coarse copper (MMC)	$(57\pm1)\times10^{3}$	(16±2)×10 ³
Bare copper (MMC)	8.4 ± 4.0	$(1.1\pm0.2)\times10^2$
OFC (MMC)	23±8	$(1.3\pm0.3)\times10^{2}$
6N copper (MMC)	<4.1	<4.8
Electroformed copper (Asahi-Kinzoku)	<5.3	<18

EF Facility: Space Requirements

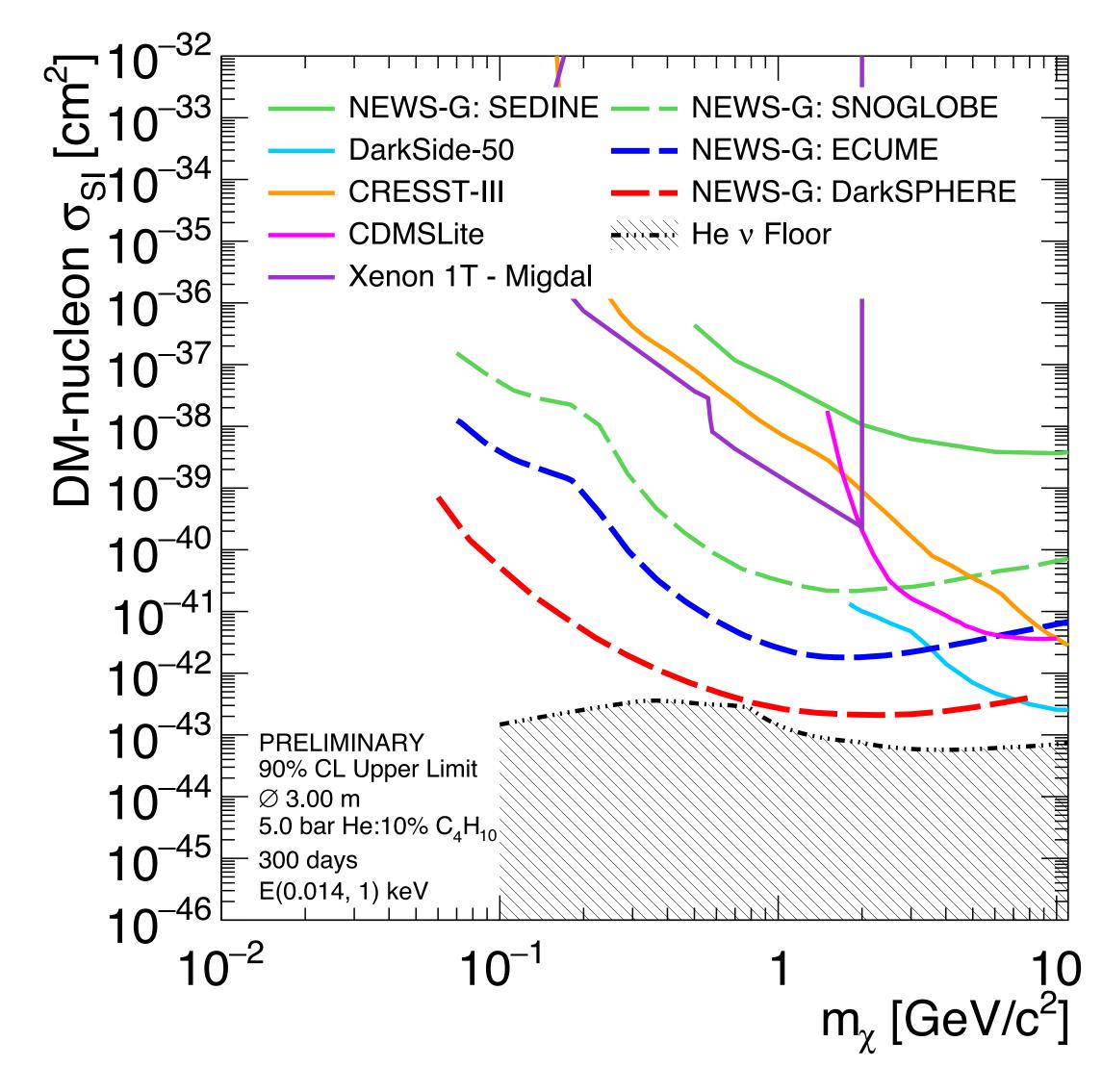
- Should be placed in **cleanroom** 1100 m depth is adequate
- Bath **footprint**: ~4x4x4 m³ suits DarkSPHERE but is large enough for wide range of uses
 - Fits in current lab, but set-up could easily be moved between labs (forklift?) if more convenient
 - Set-up can be stored when not in use
 - EF parts can be moved outside clean area if properly packaged
- Bath for could be used to form variety of shapes
- Parts can be formed directly or machined (desirably underground)
- Crane usage needed for larger parts
- Bath should be contained in spill container
- Seismic activity should be low in Boulby

Example Majorana and PNNL baths

From: Ultra-high-purity Copper Technology Update, C. Aalseth, June 2007

PNNL electroforming baths

Material, Equipment & Personnel Requirements


- Potentially hazardous chemicals
 - Sulphuric acid (electrolyte)
 - Hydrogen peroxide (etching)
 - Citric acid (surface passivation)
 - Copper sulphate (produced, in electrolyte)
- No vapour/fume from electrolyte
- No aerosol generation
- Also requires pure water (18 MΩ cm) already proposed for AIT?
 - A filtration facility can be installed and is asset for future experiments
- Cover gas nitrogen

- Power supply (high-current O(100A), low-voltage O(1V), high-precision in both
- Conductivity monitoring

- Operation could be maintained by 1 person
- Surface requirements are minimal:
 - chemical storage

Summary

- DarkSPHERE offers broad reaching physics potential
 - Neutrino-floor reaching capability in sub-GeV DM search
- Ideally, full water shield if space allows
 - Shielding explored for housing in current lab
- DarkSPHERE is a medium size project
 - Experience gained in hosting it is a stepping stone for hosting larger scale experiment
 - Capabilities/facilities required are all assets for attracting future experiments
- Boulby can benefit from NEWS-G/ECUME experience to develop electroforming facility
 - R&D, vertical access of parts, plating parameters etc.
 - STFC funding awarded for feasibility/cost/scope study

