# **Towards Theia:** advanced optical neutrino detector



Zara Bagdasarian **University of California, Berkeley** 

**EPAP Seminar at King's College London** April 12th 2021



## Theia: advanced optical multipurpose neutrino detector



Cutting edge developments in the target material and photodetection

**Broad physics program:** Studying neutrino fundamental properties and astrophysical objects







## Theia: advanced optical multipurpose neutrino detector



Cutting edge developments in the target material and photodetection

THEIA: An advanced optical neutrino detector Eur. Phys. J. C 80, 416

**Broad physics program:** Studying neutrino fundamental properties and astrophysical objects







# How to broaden the current physics reach



Scintillation Detectors:
High light yield
Low energy threshold
Good energy and position resolutions
Limited in size by absorption and cost
No directionality



Cherenkov Detectors:
 Directional information
 Can be very large (low absorption)
 Particle ID at high energies
 No access to physics below the Cherenkov threshold
 Low light yield



# How to broaden the current physics reach



Scintillation Detectors:
High light yield
Low energy threshold
Good energy and position

resolutions

S Limited in size by absorption and cost

**No** directionality

## Water-based Liquid Scintillation (WbLS) Detectors: Get best of two worlds





## Cherenkov Detectors:

- **V** Directional information
- Can be very large (low
- absorption)
- Particle ID at high energies
- No access to physics below
- the Cherenkov threshold
- S Low light yield



# Water-based Liquid Scintillator - Basics

- Water-based Liquid Scintillator (WbLS) is a mixture of pure water and oil-based liquid scintillator
- WbLS is made using a surfactant (soap-like) such as PRS\* (hydrophilic head and hydrophobic tail) to hold the scintillator molecules in water in a "micelle" structure
- Combines the advantages of water (transparency, low cost) and liquid scintillator (high light yield)









# Water-based Liquid Scintillator - Advanced

**Developed Water-based Liquid Scintillator (WbLS)** cocktails require extensive characterization:

- Light Yield
- Emission spectrum
- Scintillation time profile
- Scattering and attenuation lengths





## **Other relevant developments:**

- Nanofiltration
- Advanced reconstruction techniques, including machine learning
- Cherenkov/Scintillation separation demonstration













Large area picosecond photodetectors LAPPDs (~70 ps TTS) or other fast photodetectors



B.W.Adams et al. NIM A Volume 795, 1 (2015)



- Dichroic filters
- Red-sensitive PMTs
- Filtering



T. Kaptanoglu et al. Phys. Rev. D 101, 072002 (2020)





# **New Generation Photodetectors**

## Large area picosecond photodetector (LAPPD):

Micro-channel plate, fast-timing photodetectors

- Large-area: 20 cm  $\times$  20 cm with intrinsic mm-cm scale position resolution
- Fast timing: ~70 ps time resolution
- High quantum efficiency (QE): >20-30 %





**PD):** s cm scale



### **Other developments:** Very fast large-area & HQE PMT Large-area red-sensitive PMTs





# **Dichroic filters (Wavelength discrimination)**





## **Performance measurements and MC studies**

WbLS characterization:
Scintillation light yield
Emission time profile with betas and X-rays
Emission spectra



### Monte Carlo model construction

J. Caravaca et al. Eur. Phys. J. C 80, 867 (2020) D. Onken et al., Mater. Adv., 1, 71-76 (2020)

- J. Caravaca et al. Eur. Phys. J. C 77, 811 (2017)
- J. Caravaca et al. Phys. Rev. C 95, 055801 (2017)

CHESS experiment at UC Berkeley Example of impact on the CNO measurement precision:





# Scaling up





# ANNIE @FermiLab

## Main Goal:

understanding neutrino-nucleus interactions, focusing on production and multiplicity of final-state neutrons



## **Interest to Theia**:

- First deployment of LAPPDs (happening now)
- Deployment of 0.5 t WbLS
- C/S separation in a large-scale experiment
- High and low-energy events reconstruction
- Neutron detection



### CV

Start of data taking: ~2016 (WbLS ~2021-2022)

**Location:** Booster Neutrino Beam @ FermiLab (USA)

Water-volume: 26t

WbLS volume: 0.5t

Interests: neutrinonucleus interactions

A.R. Back et al JINST 15 P03011 (2020) M.J.Minot et al NIM A 787, 78 (2015)

## Show feasibility of WbLS in a neutrino-beam environment





# **ANNIE: Current Status**

Commissioning & neutron calibration runs with 132 PMTs completed

•First deployment of LAPPDs

ANNIE has 5 LAPPDs at hand, characterization ongoing at Fermilab test stand

•Further calibration campaigns: Laser diffuser ball, <sup>137</sup>Cs standard candle

Production of WbLS vessel











# **Advanced Instrumentation Testbed Neutrino Experiment One (AIT/NEO)**



Neutrino Experiment One (NEO) the first demonstration of reactor monitoring in the far-field

## Main Goal:

non-intrusively detect the ON/OFF power cycle of a single reactor

## **Interest to Theia**:

- Deployment of kt scale WbLS
- Low energy antineutrinos detection in WbLS



CV

**Start of data taking:** ~2024

**Location:** Boulby Underground Lab (UK)

WbLS volume: 1kt

**Interests:** 

Non-proliferation, Solar neutrinos, NLDBD







# **AIT/NEO: Current Status**

25km standoff between Hartlepool reactor and Boulby Lab



**Results from the NEO Performance Trade Study**"





### - Dependence on photo coverage:



## Theia: advanced optical multipurpose neutrino detector



Cutting edge developments in the target material and photodetection

THEIA: An advanced optical neutrino detector Eur. Phys. J. C 80, 416

**Broad physics program:** Studying neutrino fundamental properties and astrophysical objects







# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## solar neutrinos (CNO, 8B)

## geoneutrinos

## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos











# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## solar neutrinos (CNO, 8B)

## geoneutrinos

## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos











## Theia-25 at long baseline neutrino facility (LBNF) Can be located at fourth Deep **Underground Neutrino Experiment** (DUNE) cavern (Depth: 4300 m.w.e.) Sanford Underground





## Using Fermilab's LBNF neutrino beam for long-baseline neutrino oscillation measurements







• Currently measured:  $\theta_{12}, \theta_{23}, \theta_{13}$ 

$$\Delta m_{21}^2$$
,  $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ 

• Next milestones:

 $\Delta m_{32}^2, \, \delta_{CP}$ 



• Currently measured:  $\theta_{12}, \theta_{23}, \theta_{13}$ 

$$\Delta m_{21}^2$$
,  $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ 

• Next milestones:

 $\Delta m_{32}^2, \, \delta_{CP}$ 



### Normal Ordering (NO)



### **Inverse Ordering (IO)**





• Currently measured:  $\theta_{12}, \theta_{23}, \theta_{13}$ 

$$\Delta m_{21}^2$$
,  $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ 

- Next milestones:  $\Delta m_{32}^2, \, \delta_{CP}$
- $v_{e/}$  anti- $v_{e}$  appearance,  $v_{\mu}$ /anti- $v_{\mu}$  disappearance:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 2sin(2\theta_{23})sin^2 - \frac{1}{2}$$







Normal Ordering (NO)

• Currently measured:  $\theta_{12}, \theta_{23}, \theta_{13}$ 

$$\Delta m_{21}^2$$
,  $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ 

- Next milestones:  $\Delta m_{32}^2, \, \delta_{CP}$
- $v_{e/}$  anti- $v_{e}$  appearance,  $v_{\mu}$ /anti- $v_{\mu}$  disappearance:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 2sin(2\theta_{23})sin^2 - \frac{1}{2}$$

Long baseline (~1300km): more matter -> more sensitivity to mass hierarchy

$$A = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}$$

• A  $\sim 40\%$  in the region of the peak flux in the absence of CP-violating phase



 $\mathcal{V}_1$ 

 $\nu_3$ 





- Broad range of neutrino energies: sensitive to the shape of the oscillation spectrum for a range of neutrino energies.
- Sensitive to both CP violating phase and mass ordering
- Rejecting neutral current background
- Improved reconstruction methods (ring imaging)



### v. Spectrum: 1 ring, 0 decay v. Spectrum: 1 ring, 1 decay > 200 Signal + Bg, $\delta_{CP} = 0^{\circ}$ Normal Ordering Signal + Bg, b cp = 0' Normal Ordering ≥ 180 70-kt (fiducial) WCD 70-kt (fiducial) WCD Signal + Bg, b<sub>cp</sub> = 90 Signal + Bg, bcp = 90° N 160 3.5 years v N 160 3.5 years v Signal + Bg, bcp = -90° Signal + Bg, b<sub>cp</sub> = -90 v., CC Bg v., CC Bg 140 140 v, NC Bg v. NC Bg 120 120 Beam v. Bg Beam v. Bg Neutrino Energy (GeV) Neutrino Energy (GeV) v. Spectrum: 2 ring, 0 decay v. Spectrum: 2 ring, 1 decay Normal Ordering Signal + Bg, 8 cp = 0° Normal Ordering Signal + Bg, b<sub>CP</sub> = 0° ≥ 180 70-kt (fiducial) WCD 70-kt (fiducial) WCD Signal + Bg, 5 cp = 90° Signal + Bg, b en = 90 N 160 3.5 years y N 160 3.5 years v Signal + Bg, $\delta_{CP} = -90^\circ$ Signal + Bg, b<sub>cp</sub> = -90 v., CC Bg v., CC Bg 140 v. NC Bg v., NC Bg Beam v. Bg Beam v., Bg Neutrino Energy (GeV) Neutrino Energy (GeV) Spectrum: 3 ring, 0 decay v. Spectrum: 3 ring, 1 decay Normal Ordering Signal + Bg, b cp = 0" Normal Ordering Signal + Bg, bcp = 0 2 180 70-kt (fiducial) WCD ≥ 180 Signal + Bg, 8 cp = 90° 70-kt (fiducial) WCD Signal + Bg, b<sub>cp</sub> = 90 160 3.5 years y N 160 3.5 years v Signal + Bg, 5<sub>cp</sub> = -90° Signal + Bg, bcp = -90 v. CC Bg v., CC Bg 140 v. NC Bg v. NC Bg Beam v. Bg Beam v. Bg 20 Neutrino Energy (GeV) Neutrino Energy (GeV)

21





# Theia: oscillation parameters

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 2sin(2\theta_{23})sin^2 - \frac{1.2}{2}$$

- Theia can complement DUNE measurements (same location, different target, systematics) important cross-check
- Comparison of the unoscillated flux (measured close to the beam source) and oscillated flux at far distance.
- Combination of 3D scintillator tracker with Theia more similar to T2K
- > 5 $\sigma$  for 30% of  $\delta_{CP}$  values (524 kt-MW-year)



distinct set of detector systematic uncertainties







 $\mathcal{O}(\theta_{13}^2)$ 



# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos

## solar neutrinos (CNO, <sup>8</sup>B)

## geoneutrinos









# Theia: supernova burst neutrinos

- dynamics of the core collapse (neutronization, reheating, proto-neutron star cooling)
- the properties of the neutrinos themselves (mass hierarchy, absolute mass scale, collective oscillations)

## **Only one observed: SN1986A**

- High statistics lowthreshold
- Flavor-resolved neutrino spectra
- Supernova pointing



| 7 | Expected event rates in 100kt 10% WbLS for SN at 10kpc: |                                                  |        |  |
|---|---------------------------------------------------------|--------------------------------------------------|--------|--|
|   | Reaction                                                | Rate                                             |        |  |
|   | (IBD)                                                   | $\bar{\nu}_e + p \rightarrow n + e^+$            | 19,800 |  |
|   | (ES)                                                    | $v + e \rightarrow e + v$                        | 960    |  |
|   | $(v_e O)$                                               | ${}^{16}O(v_e, e^-){}^{16}F$                     | 340    |  |
|   | $(\bar{\nu}_e O)$                                       | ${}^{16}{\rm O}(\bar{\nu}_e, e^+){}^{16}{\rm N}$ | 440    |  |
|   | (NCO)                                                   | ${}^{16}O(\nu,\nu){}^{16}O^*$                    | 1100   |  |

- At LBNF: the combination of WbLS (THEIA) and liquid argon (DUNE) detectors at the same site -> high-statistics co-detection of neutrinos and antineutrinos.
  - Complementarity to JUNO and Hyper-K: opposite side of the Earth -> Earth matter effects
  - Pre-supernova neutrinos





## Theia: Diffuse supernova neutrino background (DSNB)

## Diffuse, isotropic flux of v from all SN explosions in the Universe.

## Not yet experimentally observed



- Cherenkov/Scintillation (C/S) ratio gives a powerful handle to discriminate atmospheric neutral current background signals;
- substantial increase in event statistics when added to Super-K and JUNO;
- 5σ discovery (125 kton-year): ~8 years (Theia-25) or lacksquare~2 years (Theia-100)









| s. | J. | С | 80, | 41 |
|----|----|---|-----|----|
|    |    |   |     |    |

# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos

## solar neutrinos (CNO, 8B)

## geoneutrinos







## Solar neutrinos

### pp chain reaction ( $\sim 99\%$ )



The primary fusion mechanism in the Sun error)

physics beyond Standard Model



## From first-time to precision measurements: 7Be flux (2.8% error), pep (~20% error), and pp (~10%

## Implications in solar and neutrino physics: Composition of the Sun, neutrino flavor transition,

## **Solar neutrinos**

nature

SECURITY BLANKE

THE HEART OF THE SUN

2018

microbiome

**O NATURE.COM** 25 October 2018 Vol. 562, No. 7728

and risk of disease PAGES 583 & 589

### pp chain reaction ( $\sim 99\%$ )



hvsicsworld

KTHROUG

UNIVERSITY OF

2014

error)

physics beyond Standard Model

**The discovery** of neutrinos from carbon-nitrogenoxygen fusion cycle by Borexino (2020) **The primary mechanism** for the stellar conversion of hydrogen into helium in the Universe Most sensitive to **Sun metallicity** (Z) puzzle

### CNO cycle (<1%)

### The primary **fusion** mechanism **in the Sun** From first-time to precision measurements: 7Be flux (2.8% error), pep (~20% error), and pp (~10%

## **Implications in solar and neutrino physics:** Composition of the Sun, neutrino flavor transition,





*i>He* 



# Theia: solar neutrinos



Theia can significantly contribute to solar neutrinos studies:

- CNO neutrinos (directionality based background rejection, solar metallicity puzzle)
- <sup>8</sup>B solar neutrinos high-statistics, low-threshold -> new physics in the MSW-vacuum transition region





M. Askins, Z.Bagdasarian et al Eur. Phys. J. C 80, 416



Borexino measurements Nature 562, p 505





# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos

## solar neutrinos (CNO, <sup>8</sup>B)

## geoneutrinos







## Geoneutrinos









 $^{238}U \rightarrow ^{206}Pb + 8 \alpha + 8 e^- + 6 \overline{\nu} + 51.7 MeV$  $^{232}Th \rightarrow ^{208}Pb + 6 \alpha + 4 e^{-} + 6 \overline{\nu} + 42.8 MeV$  $^{40}K \rightarrow ^{40}Ca + e^- + \overline{\nu} + 1.32 MeV$ 

 Currently only two measurements: Borexino (Italy), KamLAND (Japan)



Borexino PRD 101 (2020) 012009 Editor's suggestion

- Next milestones:
  - Distinct rates of U and Th, U/Th ratio
  - disentangling the signals from various reservoirs
  - Test the geological models





## Theia: Geoneutrinos









- Rate at Sanford Underground Research Facility (SURF): 26.5 interactions per kT-year
- High statistics (in comparison with existing two measurements)
- Explore geographical variations of the geoneutrino flux

Analysis of antineutrino capabilities of Theia is in preparation





# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

### nucleon decay



## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos

## solar neutrinos (CNO, <sup>8</sup>B)

## geoneutrinos







# Theia: Nucleon decay

- Huge size, deep location and scintillation light = impressive nucleon decay detector
- emitted upon an invisible neutron or proton decay (~6 MeV)





• Neutron tagging enhances sensitivity for proton decay and can be further improved by isotope loading • Scintillation light allows the observation of K+ created upon a proton decay as well as the gammas





# Theia: multipurpose neutrino detector

## neutrino mass ordering

## neutrino CPviolating phase $\delta$

## neutrinoless double beta decay

## nucleon decay



## diffuse supernova neutrinos (DSNB)

## supernova burst neutrinos

## solar neutrinos (CNO, <sup>8</sup>B)

## geoneutrinos







# **Theia: Neutrinoless Double Beta Decay**



**Elements for which normal beta** decay is suppressed: Germanium, Xenon, Tellurium





Balloon for  $0_{VV}\beta$  isotope loaded liquid scintillator



**Neutrinos are their own antiparticles** Lepton number is not conserved

- violation of total lepton number conservation
- absolute neutrino masses
- mass ordering

# **Theia: Neutrinoless Double Beta Decay**





## Phase III





















# Theia: staged approach to physics goals

### **Primary physics goal**

Using Fermilab's neutrino beam

Long-baseline oscillations

**Nucleon decay** 

Supernova burst

**Diffuse Supernova Neutrino Background** 

**CNO** neutrinos

Geoneutrinos

**Ο**ννβ



Phase I

 $ND: p \to \bar{\nu}K^+$ 

| Reach                                                    | Exposure/assumption                                       |
|----------------------------------------------------------|-----------------------------------------------------------|
| $>5\sigma$ for 30% of $\delta_{CP}$                      | 524kt-MW-year                                             |
| T>3.8 x 10 <sup>34</sup> year                            | 800 kt-year                                               |
| <1(2)° pointing<br>20K(5K) events                        | 100(25)kt, 10kpc SN                                       |
| $5\sigma$                                                | 125kt-year                                                |
| <5(10)%                                                  | 300(62.5)kt-year                                          |
| 2650 events                                              | 100 kt-year                                               |
| T <sub>1/2</sub> < 1.1 x 10 <sup>28</sup> year (90%C.L.) | 800 kt-year (Multi-tonne load<br>in suspended vessel sear |





# Theia: staged approach to physics goals







 $ND: p \to \bar{\nu}K^+$ 

| Reach                                                    | Exposure/assumption                                       |
|----------------------------------------------------------|-----------------------------------------------------------|
| $>5\sigma$ for 30% of $\delta_{CP}$                      | 524kt-MW-year                                             |
| T>3.8 x 10 <sup>34</sup> year                            | 800 kt-year                                               |
| <1(2)° pointing<br>20K(5K) events                        | 100(25)kt, 10kpc SN                                       |
| $5\sigma$                                                | 125kt-year                                                |
| <5(10)%                                                  | 300(62.5)kt-year                                          |
| 2650 events                                              | 100 kt-year                                               |
| T <sub>1/2</sub> < 1.1 x 10 <sup>28</sup> year (90%C.L.) | 800 kt-year (Multi-tonne load<br>in suspended vessel sear |





# Theia: staged approach to physics goals

### **Primary physics goal**





 $ND: p \to \bar{\nu}K^+$ 

| Reach                                                    | Exposure/assumption                                       |
|----------------------------------------------------------|-----------------------------------------------------------|
| $>5\sigma$ for 30% of $\delta_{CP}$                      | 524kt-MW-year                                             |
| T>3.8 x 10 <sup>34</sup> year                            | 800 kt-year                                               |
| <1(2)° pointing<br>20K(5K) events                        | 100(25)kt, 10kpc SN                                       |
| $5\sigma$                                                | 125kt-year                                                |
| <5(10)%                                                  | 300(62.5)kt-year                                          |
| 2650 events                                              | 100 kt-year                                               |
| T <sub>1/2</sub> < 1.1 x 10 <sup>28</sup> year (90%C.L.) | 800 kt-year (Multi-tonne load<br>in suspended vessel sear |





# Conclusions

- Progress in the novel target materials and photodetector technologies opened the path for the next-generation neutrinos experiments
- Theia will employ the advantages of these developments

to **achieve**: low energy threshold, good energy and position resolutions, directionality, large exposure and to tackle a broad physics agenda: neutrino oscillations, solar, supernova neutrinos, and neutrinoless double beta decay

• On the roadmap to Theia, opportunity to explore the technologies at large scale and tackle other physics questions and applications with **ANNIE and AIT/NEO** 





## Thank you for your altention!

### QUESTIONS ARE WELCOME now

or later @ZaraBagdasarian zara.bagdasarian@berkeley.edu https://www.zarabagdasarian.com



