Akitaka Ariga

University of Bern / Chiba University

FASER/FASERnu

From neutrinos to new particle searches

Supported by:

Who am I

- OPERA, $\nu_{\mu} \rightarrow \nu_{\tau}$
- T2K, muon flux
- (HK, astro physics)
- AEgIS/QuPlas, antimatter exps
- Eiger-mu, Glacier muon tomography
- NA65/DsTau, tau neutrino production
- FASERnu, LHC neutrinos

Expertise with emulsion detectors

Standard model and neutrinos

- In SM, neutrinos are
 - Neutral
 - Only weak interaction
 - Left-handed \rightarrow massless
 - 3 flavors

Neutrino physics

Lepton Flavor Universality, "Sacred principle" of the SM

• Three lepton families equally couple to weak boson

Intensively verified with very high accuracy, for example

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^4 = 0.178 \left(\frac{m_{\mu}}{m_{\tau}}\right)^5 \left(\frac{\tau_{\mu}}{\tau_{\tau}}\right) \implies \frac{g_{\tau}}{g_{\mu}} = 0.999 \pm 0.003$$

 It was consistent with all experimental results,,, until recently

Flavor anomaly

$$R(D) = \frac{\mathcal{B}(B \to \tau \nu_{\tau} D)}{\mathcal{B}(B \to \mu \nu_{\mu} D)}$$

Possible contribution from new physics in heavy flavors!? •

New physics effect?

Neutrino CC beauty production

OPERA's v_{τ} induced charm production event

SM process, charm production via mixing

Well measured for v_{μ}

- 1 event was observed with surprise
- Expectation:
 - Signal 0.04
 - Background < 0.05
- Could also be a hint of new physics!?

Status of Lepton Universality testing in neutrino scattering

Poor constraint for v_{τ}

High energy neutrinos ($E_{\nu} > 100$ GeV) is required to access heavy flavor channels

→ Need high statistics and high energy beam experiment!

LHC as neutrino source?

Large Hadron Collider 27 km circumference 7 TeV + 7 TeV

Let's open new domain of research! Neutrino

Wait! There is no neutrino beamline!!

LHC as a neutrino source

14 TeV p-p collision

No experiment has sought neutrinos at the LHC so far!

Intense neutrino beam (+ long lived particles, LLPs) here!

FASER

FASER (new particle searches) was approved by CERN in Mar 2019 FASERv (neutrino program) was approved by CERN in Dec 2019

High energy frontier

Unexplored energy range

Neutrino spectrum at FASER ν

Unexplored energy regime for all three flavors

Collimated beam

Neutrinos at the LHC: New domain of neutrino research!

- Neutrinos by collider method
- High energy frontier ~ TeV
- Study of production, propagation and interactions of high energy neutrinos

14 TeV p-p collision \equiv 100 PeV int in fixed target ($\sqrt{s} \sim 10$ TeV) Prompt neutrino production \rightarrow

Input for neutrino telescopes

QCD (charm/gluon PDF, intrinsic charm)

Propagation

Unique energy and baseline, $L/E \sim 10^{-3}$ m/MeV

Neutrino oscillation at $\Delta m^2 \sim 1000 \text{ eV}^2$

Interaction

3-flavor neutrino cross sections in unexplored energy range

Neutrino induced heavy quark productions

FASER: ForwArd Search ExpeRiment at the LHC

- ATLAS and CMS searches focus on high p_T → appropriate for heavy, strongly interacting particles
 - No evidence of new particles is detected so far.
- If new particles are light and weakly interacting to the SM particles (e.g. dark photon), they could be long-lived and collimated in the very forward region → FASER arXiv:1708.09389, 1811.12522

- The LOI (July 2018) and technical proposal (October 2018) were submitted. Approved by CERN in March 2019.
- Preparing for physics run in 2021 (Run3 of the LHC operation)

FASER detector & sensitivity

- Dark photon: Photon in dark sector, and it has mass
- Signal: Dark photon decay into e^+e^- pair

Detector schematic (original one without FASERnu)

Sensitivity for dark photon search in Run 3

THE FASER COLLABORATION

• 64 collaborators, 20 institutions, 8 countries

Henso Abreu (Technion), Yoav Afik (Technion), Claire Antel (Geneva), Akitaka Ariga (Bern), Tomoko Ariga (Kyushu/Bern), Florian Bernlochner (Bonn), Jamie Boyd (CERN), Lydia Brenner (CERN), Dave Casper (UC Irvine), Franck Cadoux (Geneva), Xin Chen (Tsinghua), Andrea Coccaro (INFN), Candan Dozen (Tsinghua), Yannick Favre (Geneva), Deion Fellers (Oregon), Jonathan Feng (UC Irvine), Didier Ferrere (Geneva), Iftah Galon (Rutgers), Stephen Gibson (Royal Holloway), Sergio Gonzalez-Sevilla (Geneva), Shih-Chieh Hsu (Washington), Zhen Hu (Tsinghua), Peppe Iacobucci (Geneva), Sune Jakobsen (CERN), Enrique Kajomovitz (Technion), Felix Kling (SLAC), Umut Kose (CERN), Susanne Kuehn (CERN), Helena Lefebvre (Royal Holloway), Lorne Levinson (Weizmann), Ke Li (Washington), Jinfeng Liu (Tsinghua), Chiara Magliocca (Geneva), Josh McFayden (CERN), Sam Meehan (CERN), Dimitar Mladenov (CERN), Mitsuhiro Nakamura (Nagoya), Toshiyuki Nakano (Nagoya), Marzio Nessi (CERN), Friedemann Neuhaus (Mainz), Hidetoshi Otono (Kyushu), Carlo Pandini (Geneva), Hao Pang (Tsinghua), Brian Petersen (CERN), Francesco Pietropaolo (CERN), Markus Prim (Bonn), Michaela Queitsch-Maitland (CERN), Filippo Resnati (CERN), Jakob Salfeld-Nebgen (CERN), Osamu Sato (Nagoya), Paola Scampoli (Bern), Kristof Schmieden (Mainz), Matthias Schott (Mainz), Anna Sfyrla (Geneva), Savannah Shively (UC Irvine), Jordan Smolinsky (Florida), Yosuke Takubo (KEK), Ondrej Theiner (Geneva), Eric Torrence (Oregon), Sebastian Trojanowski (Sheffield), Serhan Tufanli (CERN), Benedikt Vormwald (CERN), Dengfeng Zhang (Tsinghua), Gang Zhang (Tsinghua)

THE FASER COLLABORATION

• 64 collaborators, 20 institutions, 8 countries

Henso Abreu (Technion), Yoav Afik (Technion), Claire Antel (Geneva), Akitaka Ariga (Bern), Tomoko Ariga (Kyushu/Bern), Florian Bernlochner (Bonn), Jamie Boyd (CERN), Lydia Brenner (CERN), Dave Casper (UC Irvine). Franck Cadoux (Geneva). Xin Chen (Tsinghua). Andrea Coccaro (INFN), Candan Dozen

(Tsinghua), Yannick Favre (Gene Holloway), Sergio Gonzalez-Ser Kajomovitz (Technion), Felix Kli (Washington), Jinfeng Liu (Tsin Nakamura (Nagoya), Toshiyuki Pang (Tsinghua), Brian Peterser Jakob Salfeld-Nebgen (CERN), Savannah Shively (UC Irvine), Ja (Sheffield), Serhan Tufanli (CER

JOHANNES GUTEN

UNIVERSIT

ers), Stephen Gibson (Royal Jakobsen (CERN), Enrique Levinson (Weizmann), Ke Li v (CERN), Mitsuhiro , Carlo Pandini (Geneva), Hao I), Filippo Resnati (CERN),), Anna Sfyrla (Geneva), Sebastian Trojanowski

UC Irvine

UNIVERSITY of ASHINGTON

UNIVERSITY OF

Part of the Collaboration at the first CM in Apr 2019

Emulsion detectors: 3D tracking device with 50 nm precision

AgBr crystal = detector 10¹⁴ channels/film or 10¹⁴ channels/cm³

Antiproton annihilation in emulsion Antiproton annihilation taken in AEgIS 2012

3D view of emulsion detector

3D high resolution hits

- Work as tracker
- dE/dx proportional to darkness (Number of grains)

150 μm x 120 μm x 50 μm

Emulsion = a detector with high detection channel density

ATLAS-IBL pixel sensor FE-14

1 pixel =

250 μm x 50 μm x 200 μm

Sum of all channels in ATLAS = ~10⁸

150 μm x 120 μm x 50 μm
1.2x10⁸ channels (crystal) in this volume.
1 film = 10¹⁴ channels

High density of detection channels, O(10¹⁴) channels/cc, makes emulsion attractive for many purposes.

Emulsion-based neutrino detector

Emulsion-based neutrino detector

FASERnu Schedule

We are in LS2. Pilot run was performed in 2018. Physics run will start in 2022.

FASERv history (personal view)

-2011 • ν_{τ} with Tevatron? \rightarrow shutdown 2013-• ν_{τ} with CERN SPS \rightarrow NA65/DsTau, SHiP 2018, in Run 2 of LHC operation • April, first contact with FASER project • May, joined to take BG data • June, install emulsion detector Aug, FASER LOI • • July, \rightarrow emulsion can work! • Sep-Oct, install a pilot neutrino detector and data taking Nov, FASER TP 2019 • Jan, First neutral interactions Mar, FASER approval • Aug, FASERnu LOI Oct, FASERnu Technical proposal • Dec, FASERnu Approval

10.1140/epjc/s10052-020-7631-5

2019

Aug

0

[hep-ex]

arXiv:1908.02310v1

CERN-EP-2019-160, KYUSHU-RCAPP-2019-003, SLAC-PUB-17460, UCI-TR-2019-19

Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC

FASER Collaboration

Henso Abreu,¹ Claire Antel,² Akitaka Ariga,^{3,*} Tomoko Ariga,^{3,4,*} Jamie Boyd,⁵ Franck Cadoux,² David W. Casper,⁶ Xin Chen,⁷ Andrea Coccaro,⁸ Candan Dozen,⁷ Peter
B. Denton,^{9,†} Yannick Favre,² Jonathan L. Feng,⁶ Didier Ferrere,² Iftah Galon,¹⁰ Stephen Gibson,¹¹ Sergio Gonzalez-Sevilla,² Shih-Chieh Hsu,¹² Zhen Hu,⁷ Giuseppe Iacobucci,²
Sune Jakobsen,⁵ Roland Jansky,² Enrique Kajomovitz,¹ Felix Kling,^{6,13,*} Susanne Kuehn,⁵
Lorne Levinson,¹⁴ Congqiao Li,¹² Josh McFayden,⁵ Sam Meehan,⁵ Friedemann Neuhaus,¹⁵
Hidetoshi Otono,⁴ Brian Petersen,⁵ Helena Pikhartova,¹¹ Michaela Queitsch-Maitland,⁵
Osamu Sato,¹⁶ Kristof Schmieden,⁵ Matthias Schott,¹⁵ Anna Sfyrla,² Savannah Shively,⁶ Jordan Smolinsky,⁶ Aaron M. Soffa,⁶ Yosuke Takubo,¹⁷ Eric Torrence,¹⁸
Sebastian Trojanowski,¹⁹ Callum Wilkinson,^{20,†} Dengfeng Zhang,⁷ and Gang Zhang⁷

¹Department of Physics and Astronomy, Technion—Israel Institute of Technology, Haifa 32000, Israel ²Département de Physique Nucléaire et Corpusculaire, University of Geneva, CH-1211 Geneva 4, Switzerland ³Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland ⁴Kuushu Universitu, Nishi-ku, 819-0395 Fukuoka, Japan

FASER LOCATION - TI12

Particle fluence at the site

- Crucial for both neutrinos and LLP searches
- Simulation through the LHC infrastructures by FLUKA and BDSim
- Minimum muons, maximum neutrinos

BDSim result for TI12, Lefebvre ICHEP2020

Muon energy (at 409m from IP, pilot run) Simulated by CERN-STI group with FLUKA

In situ measurements in 2018: Charged particle background

10⁴

10³

10²

10

104

10³

10²

10

- Emulsion detectors were installed to investigate TI18 and TI12.
- Low background was confirmed.
- Few hadron tracks
- Consistent with the FLUKA prediction.

	Normalized flux (tracks/fb ⁻¹ /cm ²)		
Tl18	$(2.6 \pm 0.7) \times 10^4$		
Tl12	$(3.0 \pm 0.3) \times 10^4$		

Emulsion detector can work at the actual environment! (up to $\sim 10^6/\text{cm}^2 \simeq 30 \text{ fb}^{-1} \text{ of data}$)

Tl18

Tl12

Angular distributions of beam backgrounds

Close up to the main peak

l tungsten plates, o.5 mm emulsion films, o.3 mm

31

Pilot run in 2018

Aiming to demonstrate the feasibility of detection of collider neutrinos

30 kg detector

6 weeks, 12.2 fb⁻¹

 A 30 kg emulsion based (lead, tungsten target) detector was installed on axis, 12.2 fb⁻¹ of data was collected in Sep-Oct 2018 (6 weeks)

Neutrino interaction candidates

Background for neutrino analysis

- Muons rarely produce neutral hadrons in upstream rock or in detector, which can mimic neutrino interaction vertices
 - Probability of $O(10^{-5})$
- The produced neutral hadrons are low energy → Discriminate by vertex topology

• (For physics run, Lepton ID will kill most of background)

	Negative Muons	Positive Muons
K_L	3.3×10^{-5}	9.4×10^{-6}
K_S	8.0×10^{-6}	2.3×10^{-6}
n	2.6×10^{-5}	7.7×10^{-6}
\bar{n}	1.1×10^{-5}	3.2×10^{-6}
Λ	3.5×10^{-6}	1.8×10^{-6}
$ar{\Lambda}$	2.8×10^{-6}	8.7×10^{-7}

Production rate per muon (E_{had}>10 GeV)

arXiv:2105.06197

Pilot run event statistics

- Analyzed target mass of 11 kg
- Pilot neutrino detector doesn't have lepton ID
 - → Separation from neutral hadron BG (produced by muons) is challenging → tighter cuts
- Expected signal = $3.3^{+1.7}_{-0.95}$ events, BG = 11.0 events
- 18 neutral vertices were selected
 - by applying # of charged particle \geq 5, etc.
- In BDT analysis, an excess of neutrino signal is observed. Statistical significance = 2.7 sigma from null hypothesis
- This result demonstrates the detection of neutrinos from the LHC

Vertex detection efficiency

Si	Signal		Background	
			FTFP_BERT	QGSP_BERT
ν_e	0.490	K_L	0.017	0.015
$\bar{\nu_e}$	0.343	K_S	0.037	0.031
$ u_{\mu}$	0.377	n	0.011	0.012
$\bar{\nu_{\mu}}$	0.266	\bar{n}	0.013	0.013
$\nu_{ au}$	0.454	Λ	0.020	0.021
$\bar{ u_{ au}}$	0.368	$ar{\Lambda}$	0.018	0.018

Detector in the LHC Run3 (2021-2024)

1.2 tons
Conceptual detector design

Emulsion films + tungsten plates

Simulated 1 TeV ν_{μ} CC interaction

FASER ν + FASER, hybrid configuration

- Muon charge identification
- Distinguish v_{μ} and $\bar{v}_{\mu} \rightarrow$ Wider physics cases
- Improve neutrino energy reconstruction

Neutrino event rate (2021-2024)

- Small detector, but a lot of interactions (${\sim}10^4$ CC) are expected during Run3
- Neutrino fluxes are being cross-checked among different simulations
 - Differences due to hadron generators and beamline infrastructure reproduction were identified. Currently, differences at hadron generators level is dominant

Expected number of CC interactions in FASER ν in Run3 (14 TeV LHC, 150 fb⁻¹)

	SIBYLL	Pythia 8	DPMJET (used in FLUKA)
$ u_e$, $ar{ u}_e$	800, 452	826 , 477	3390, 1024
$ u_{\mu}$, $ar{ u}_{\mu}$	6571, 1653	7120, 2178	8437 , 2737
$ u_{ au}$, $ar{ u}_{ au}$	16, 6	22 , 11	111,43

- Work in progress for quantifying and reducing these uncertainties
 - Creating a dedicated forward physics tune with Pythia8, using forward data (LHCf, FASER's muon measurements, etc.)

Large variation between different hadron production models (at p-p collision)

Physics studies in the LHC Run 3 (1): Cross sections

FASER Collaboration, Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310

- Neutrino cross section measurement at unexplored energy range
 - v_e , v_{τ} at the highest energy
 - Fill the gap between accelerator and cosmic data for u_{μ}

Projected precision of FASER ν measurement at 14-TeV LHC (150 fb⁻¹)

inner error bars: statistical uncertainties, outer error bars: uncertainties from neutrino production rate corresponding to the range of predictions obtained from different MC generators.

Physics studies in the LHC Run 3 (2): Heavy-flavor-associated channels

- Measure charm production channels
 - Large rate ~ 10% ν CC events, $\mathcal{O}(1000)$ events
 - First measurement of v_e induced charm prod.

$$v_{\tau}$$
 V_{τ}
 W^{\pm}
 d
 V_{cd}
 c

$$\frac{\sigma(\nu_{\ell}N \to \ell X_c + X)}{\sigma(\nu_{\ell}N \to \ell + X)} \quad \ell = e, \mu$$

Search for Beauty production channels

• Expected SM events (v_{μ} CC b production) are $\mathcal{O}(0.1)$ events in Run 3, due to CKM suppression, $V_{ub}^2 \simeq 10^{-5}$

$$\bar{\nu}N \to \ell \bar{B}X$$

 $\nu N \rightarrow \ell B D X$

Physics studies in the LHC Run 3 (3): QCD

PDF in proton (neutrino production)

- Forward particle production is poorly constrained by other LHC experiments. FASERv's neutrinos flux measurements will provide novel complimentary constraints that can be used to validate/improve MC generators.
- Neutrinos from charm decay could allow to test transition to small-x factorization, constrain low-x gluon PDF and probe intrinsic charm.

PDF in target (neutrino interaction)

• It is also interesting to probe (nuclear) PDFs via DIS neutrino scattering. In particular, charm associated neutrino events ($\nu \ s \rightarrow l \ c$) are sensitive to the poorly constrained strange quark PDF.

Physics studies in the LHC Run 3 (4): Cosmic rays and neutrino

- In order for IceCube to make precise measurements of the cosmic neutrino flux, accelerator measurements of high energy and large rapidity charm production are needed.
- As 7+7 TeV p-p collision corresponds to 100 PeV proton interaction in fixed target mode, a direct measurement of the prompt neutrino production at FASERv would provide important basic data for current and future highenergy neutrino telescopes.

IceCube Collaboration,

Astrophys. J. 833 (2016)

 Muon problem in CR physics: cosmic ray experiments have reported an excess in the number of muons over expectations computed using extrapolations of hadronic interaction models tuned to LHC data at the few *σ* level. New input from LHC is crucial to reproduce CR data consistently.

K.H. Kampert, M. Unger, Astropart. Phys. 35, 660 (2012), H.P. Dembinski et al., EPJ Web Conf. 210, 02004 (2019)

prompt atmospheric neutrinos

Physics studies in the LHC Run 3 (5): BSM Physics

 The tau neutrino flux is small in SM. A new light weakly coupled gauge bosons decaying into tau neutrinos could significantly enhance the tau neutrino flux.

F. Kling, Phys. Rev. D 102, 015007 (2020), arXiv:2005.03594

• NC measurements at FASER*v* could constrain **neutrino non-standard interactions** (NSI).

A. Ismail, R.M. Abraham, F. Kling, arXiv: 2012.10500

• Sterile neutrinos with mass ~40 eV can cause oscillations at FASERv and the spectrum deformation may be seen.

FASER Collaboration, Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310

• If DM is light, the LHC can produce an energetic and collimated DM beam towards FASER*v*. FASER*v* could also search for **DM scattering**.

B. Batell, J. Feng, S. Trojanowski, 2020, in preparation

Emulsion detector preparation

- Emulsion gel and film production facilities in Nagoya have been set up in 2020. We are testing mass production
- Chemical compatibility of tungsten plates with emulsion film were tested

Solution tanks

Crystal formation tank

Tungsten plate

Emulsion film

Experimental site

Evolution of Tl12 tunnel for FASER installation

2021 March 24th, ALL equipment for the new particle searches are installed,,, except for FASERnu

FASERnu comes here

Magnets and silicon trackers

WP ----

Čalorimeter

FASER ν installation test in April 2021

PM85 · UJ12 · PM15

LHC Schedule

- LHC Run-3 will start in 2022, aiming to double the integrated luminosity
- HL-LHC, starting in 2027, will deliver 10 times more integrated luminosity

Motivation to Forward Physics Facility (FPF)

- LHC is currently the high energy frontier, and in next 15 years.
- The high luminosity run (HL-LHC) will start in 2027. What is the best way to exploit it?
 - Conventional LHC exps (ATLAS, CMS) studies "Physics with high Pt, small cross sections (fb, pb, nb)
 - However, the total cross section is 100 mb, mostly at far forward direction (small Pt). Why not to use this abundant events?
- Far forward physics = unexplored physics domain, but explorable with a relatively small investment thanks to the existence of the LHC, as pioneered by FASER
- Proposal: "Let's build a Forward Physics Facility and host variety of experiments"
 - SM: tau neutrino, QCD, cosmic ray
 - BSM: LLPs, FIPs, dark sector particles, milli-charged particles

THE PARTICLE LANDSCAPE

FASER/FPF

Idea of FPF

- Multiple single-purpose detectors
 - LLPs: FASER2
 - Neutrino, FIP: FASERv2 (on-axis), SND2 (off-axis), LAr
 - Milli-charged particle : MilliQan

FASER

- An experimental hall to host these experiments → Forward Physics Facility (FPF)
- Neutrino experiment with x200 statistics (x10 detector x20 beam)
 - Focus on tau neutrinos

FPF locations

Two possibilities under active investigation: enlarge existing cavern UJ12, 480 m from ATLAS and shielded from the ATLAS IP by ~100 m of rock; or create a new shaft and cavern ~612 m from ATLAS past UJ18.

FASERv2: Neutrino physics

- FASERv @ LHC-Run 3 (1.2 ton)
 - Unexplored TeV energy ~1000 v_e , ~10,000 v_{μ} , ~10 v_{τ} CC events
 - Also SND@LHC (off-axis)
- FASERv2 @HL-LHC (~10 ton)
 - FASER ν_2 : Beam x 20, ~10 tons mass \rightarrow 200 times FASER ν
 - ~10⁵ ν_{e} , 10⁶ ν_{μ} , 10³ ν_{τ} CC events
- Tau neutrino physics, precise measurement of cross sections, rare process

FASER2: New particle searches (Long Lived Particles)

• FASER2, New larger detector at Forward Physics Facility

- FASER (R=10cm, L=1.5m, Run 3) → FASER 2 (R=1m, L=5m, HL-LHC) x 300 decay volume
- Largely explore unexplored parameter space

FASER Collaboration, 1811.12522 (2018)

x 20 beam

Current status of FPF

- FPF fits European and US's strategy
 - Update of the European Strategy(2020), diversity of particle physics, maximum use of the LHC
 - CERN's Physics Beyond Colliders, https://indico.cern.ch/category/7885/
 - US's Snowmass community study and P5 prioritization.
 - FPF https://doi.org/10.5281/zenodo.4059893 (over 200 signatures within 1 week)
 - LoFASER2: https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF9_EF6-NF3_NF6-RF6_RFo-CF7_CFo-AF5_AF0_FASER2-038.pdf
 - FASERnu2: <u>https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF10_NF6-EF6_EF9-IF0_FASERnu2-006.pdf</u>
 - Neutrino detector: <u>https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF10_NF0-EF0_EF0_Ariga-072.pdf</u>
- FPF kick-off workshop (9-10 November 2020)
 - 40 talks, lively discussions over wide topics
 - <u>https://indico.cern.ch/event/955956</u>
- Second workshop in 2 weeks <u>https://indico.cern.ch/event/1022352/</u>

• HL-LHC is going to start 2027. Now is the time to discuss physics and feasibility of FPF.

Summary

- The FASER experiment is a new experiment at the LHC with 2 pillars
 - FASER: Search for new particles
 - FASER*v*: Neutrinos
- FASER ν is the first neutrino experiment with a collider
 - Beam at new kinematical regime, including 3 flavors
 - Detector with flavor sensitivity
 - Data taking in 2022-2024
 - Detection of neutrinos from the LHC was demonstrated with the pilot detector in 2018
- Future projects (FPF) at the HL-LHC are under discussion

Publications on FASER/FASERnu

• Publications of the FASER Collaboration

- FASER Letter of Intent at <u>CERN document server</u> and in <u>arXiv</u>
- FASER Technical Proposal at <u>CERN document server</u> and in <u>arXiv</u>
- FASER's Physics Reach for Long-Lived Particles in <u>Physical Review D</u> and in <u>arXiv</u>
- Input to the European Strategy for Particle Physics Update in <u>arXiv</u>
- Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC in <u>European Physical Journal C</u> and in <u>arXiv</u>
- Technical Proposal of FASERv neutrino detector at <u>CERN document server</u> and in <u>arXiv</u>
- First neutrino interaction candidates at the LHC in <u>arXiv</u>

Kiv New since last week!

- Conference talks on FASERnu
 - Neutrinos at CERN, NEUTRINO 2020, 24 June 2020, Tomoko Ariga
 - FASERnu, ICHEP 2020, 28 July 6 August, Akitaka Ariga

Lepton non-universality?

	channel	Lepton universality
W decay	$W \to \tau \nu_{\tau}$	\triangle (2.8 σ)
B decays	full leptonic $B \rightarrow \tau \nu_{\tau}$	\bigtriangleup
	R_D : semi leptonic $B \rightarrow D^{(*)} \tau \nu_{\tau}$	$\times (3\sigma)$
	R_K : neutral semileptonic $B \to K \ell^+ \ell^-$	$\times (3\sigma)$
B_s decay	$B_s \to D_s \tau \nu_{\tau}$	\bigtriangleup
	$B_c \to J/\psi \tau \nu_\tau / B_c \to J/\psi \mu \nu_\mu$	\triangle (2 σ)
Charm decay	full leptonic $D_s ightarrow au u_{ au}$ / $D_s ightarrow \mu u_{\mu}$	O (1 σ excess)
Lepton leptonic decay	$ au o \mu u u / \mu o e u u$	\odot
Kaon decay	$K \to e \nu / K \to \mu \nu$	\odot
Pion decay	$\pi ightarrow \mu u / \pi ightarrow e u$	\odot
tau CC interaction	never measured	-
$ u_{ au}$ CC interaction	$ u_{ au}N o au X$	riangle (too few statistics)

Accelerator-based v_{τ} cross section measurement

v_τ production study: DsTau (NA65)

- No experimental data on the Ds differential cross section
- Large systematic uncertainty (~50%) in the ν_τ flux prediction

v_{τ} detection: e.g. DONuT, SHiP, FASERv

- Statistical uncertainty 33% in DONUT
- Will be reduced to the 2% level in future experiments

Variables for MVA

Expected distributions of the variables

Conceptually why these variables are good:

Variable 1, 2: The neutrino energy is higher than the neutral hadron energy. Higher energy, more particles are produced in forward direction, i.e. tan(theta)<0.1 (var 1), and higher ratio of var1/var2.

Variable 3: Momentum in the transverse plane is more balanced in hadron interactions than neutrino CC and NC interactions. Outgoing leptons in neutrino interactions take a major energy, which distorts this variable.

Variable 4, 5: For CC interactions, we expect the outgoing lepton and hadron system are back to back in the transverse plane.

5 variables used in the analysis

- 1. the number of tracks with $\tan\theta <=0.1$ with respect to the beam direction
- 2. the number of tracks with 0.1<tan θ <=0.3 with respect to the beam direction
- the absolute value of vector sum of transverse angles calculated considering all the tracks as unit vectors in the plane transverse to the beam direction (a_{sum})
- 4. for each track in the event, calculate the mean value of opening angles between the track and the others in the plane transverse to the beam direction, and then take the maximum value in the event (ϕ_{mean})
- 5. for each track in the event, calculate the ratio of the number of tracks with opening angle <=90 degrees and >90 degrees in the plane transverse to the beam direction, and then take the maximum value in the event (r).

- Multiplicity and Pseud rapidity distribution
- Momentum balance

Back-to-back kinematics at vertex

Roadmap towards a future experiment

FASER2 Physics Sensitivity

Physics Beyond Colliders benchmark cases

Benchmark Model	FASER	FASER 2	References
V1/BC1: Dark Photon			Feng, Galon, Kling, Trojanowski, 1708.09389
V2/BC1': U(1) _{B-L} Gauge Boson	\checkmark	\checkmark	Bauer, Foldenauer, Jaeckel, 1803.05466 FASER Collaboration, 1811.12522
BC2: Invisible Dark Photon	-	-	_
BC3: Milli-Charged Particle	_	-	_
S1/BC4: Dark Higgs Boson	-	\checkmark	Feng, Galon, Kling, Trojanowski, 1710.09387 Batell, Freitas, Ismail, McKeen, 1712.10022
S2/BC5: Dark Higgs with hSS	-		Feng, Galon, Kling, Trojanowski, 1710.09387
F1/BC6: HNL with e	-		Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
F2/BC7: HNL with μ	-	\checkmark	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
F ₃ /BC8: HNL with τ	\checkmark	\checkmark	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
A1/BC9: ALP with photon			Feng, Galon, Kling, Trojanowski, 1806.02348
A2/BC10: ALP with fermion	\checkmark		FASER Collaboration, 1811.12522
A3/BC11: ALP with gluon	\checkmark		FASER Collaboration, 1811.12522

FASERv2: Neutrino physics

- FASERν @ LHC-Run 3 (1.2 ton)
 - Unexplored TeV energy ~1000 v_e , ~10,000 v_{μ} , ~10 v_{τ} CC events
 - Also SND@LHC (off-axis)
- FASERv2 @HL-LHC (~10 ton)
 - FASER ν_2 : Beam x 20, ~10 tons mass \rightarrow 200 times FASER $\nu \sim 10^5 v_{e}$, $10^6 v_{\mu}$, $10^3 v_{\tau}$ CC events

FASERv2:QCD physics

• 超前方ハドロン生成

- ・現状、データの欠如・大きな不定性。
 - モデルにより大きく違う(EPOS-LHC, QGSJET, DPMJET, SIBYLL, PYTHIA)
 - 陽子陽子衝突時、Small-x とLarge-xのパートンが寄与。カラー グラス凝縮、Intrinsic charm→ニュートリノスペクトルにゆがみ
- 宇宙線物理学へのインプット。E.g.) IceCubeでの高エネル ギー宇宙ニュートリノ解析へのプロンプトニュートリノ背景 事象に制限
- FASERv2 にてQCDの詳細解析
 - ニュートリノ生成
 - 陽子内パートン (K, D → v_e , $\pi \rightarrow v_{\mu}$, D → v_{τ})
 - ニュートリノ反応
 - ν CC チャーム粒子生成による標的中のストレンジネスパートンの研究 $\nu_{\ell}s \rightarrow \ell c$

ν flux at FASERνに寄与するパートン

ミュー粒子バックグランド

2018年 FASER data

複数のFPFオプション ~既存のトンネルの拡張

- Option 1
- ・既存のLHCトンネルに横穴
- 安価だが使えるスペースが 限定的

- Option 2
- •既存のトンネルを拡張
- 大規模な工事が必要
- 高価

複数のFPFオプション ~新しい縦穴

- ATLASから600-800m地点に縦穴を掘り、実験ホールを作る。
- 高価だがスペースの大きさ、建設ス ケジュールの立てやすさ等にメリッ
 ト。LHCのスケジュールに非干渉。

Simulated 1 TeV ν_{μ} CC interaction

Detection efficiency

Tau decay detection efficiency =75% ($\tau \rightarrow 1$ prong)

Particle momentum measurement

by multiple Coulomb scattering (MCS)

- Sub-micron precision alignment using muon tracks
 - Our experience = 0.4 μ m (in the DsTau experiment)
- This allow to measure particle momenta by MCS, even above 1 TeV.

Sterile neutrino oscillation

- Due to unique energy and baseline ($L/E \sim 10^{-3}$ m/MeV), FASER ν is sensitive to large $\Delta m^2 \sim 10^3$ eV².
- Neutrino spectrum deformation
- Competitive in disappearance channels.

OUPLAS: First demonstration of antimatter wave interferometry

• 8-14 keV positron

physicsworld

2019

Glacier bedrock radiography

- Muon radiography applied to Swiss alps
- Discovery of steep bedrock shape, need a new understanding of glacial erosion process.
- <u>Nature Scientific Reports</u>
- <u>s41598-019-43527-6</u>

