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BACKGROUND

Dynamical mass measurements are important for understanding the
Milky Way in general, and more specifically in terms of its dark matter

>

* The local density of dark matter is a crucial quantity for indirect and
direct dark matter detection experiments

> We might be left with gravitational information for a long time, but
gravitational probes could themselves shed light on the particle
nature of dark matter (substructure, subhalos, cusp/core, dark
matter self-interaction, thin dark disk)

> Steady state measurements have been in use for a century (other
methods use stellar streams, direct stellar acceleration measurements)

However, the Milky Way is host to non-equilibrium structures, which
has become especially clear with the Gaia survey

“The data has surpassed the models” — we need to think about new
ways of modelling and extracting information from our increasingly
complex image of the Milky Way
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A Local modelling of disk

I Circular velocity curve
A Global models & local observations

Global models & circ. vel. curve

Il Jeans anisotropic modelling of disk

@ Halostars

Very local analyses are missing from list,
for which ppy o uncertainties are large
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Results are inconsistent; uncertainties
must be underestimated

" This highlights the need to go
beyond the common assumptions of
an “ldeal Galaxy”: steady state,
axisymmetry, mirror symmetry across
the Galactic plane

Uncertainties associated with the
baryonic distribution are still
significant (if not dominant), and
often underestimated



THE LOCAL PHASE-SPACE SPIRAL
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THE LOCAL PHASE-SPACE SPIRAL

.’_:‘ﬁ"$;\”::\ ¢

2 et

ORI TP R IR : 0.4

0.3
0.2
0.1
0.0
—0.1
—0.2
—0.3
—0.4

Vv, [km/s]
bp=p/p—1

Laporte et al., MNRAS 485 (2019) 3134-3152



BEYOND EQUILIBRIUM

> It's possible to model the dynamics and measure the mass of
a time-varying system

> In the absence of a steady state, we must make some other
strong assumption:

* Quasi steady state, 1st order perturbation
> Something is conserved (e.g. the orbits of stellar streams)

> Strong prior on initial conditions (e.g. BORG, large-scale
structure formation, Gaussian prior)

> External forces acting on the system are known over time-
scales longer than the equilibration time



GENERAL
PRINCIPLES
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MODELLING ASSUMPTIONS

1.

2.

Separability of the vertical dimension
(1d approximation)

The spiral inhabits a static gravitational
potential (neglecting self-gravity)

The perturbation that gives rise to the
spiral has no initial winding



ANALYTIC MODEL
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A SIMPLE EXAMPLE
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» Any point on the spiral is
associated with a vertical
energy

» Point A is purely kinematic
energy; point B is purely
potential energy

» In the limit of high winding, E 4

approaches E_  from above

» Even if winding is not very high,
@(E,) is a smooth function; this
strongly constrains ®(z) if we

consider a longer segment of
the spiral



A FEW MORE
EXAMPLES

» Three spirals, sitting in three
different gravitational
potentials

» Even though the three
spirals have the same
amount of winding (in terms
of laps around the origin),

they are clearly differentiable

from each other
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MODEL OF
INFERENCE




Free parameters

Whuik Bulk phase-space density parameters
M 0 D E L 0 F | oag Weights of the Gaussian mixture model
O .k, Owk | Dispersions of the Gaussian mixture model
Wopiral Spiral phase-space density parameters
I N F E R E N C E | Pr=(1234) | Mid-plane matter densities

|t Time since the perturbation was produced
| 7 Initial angle of the perturbation

Relative density amplitude of the spiral

| Full phase-space density
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FITTING PROCEDURE

We fit the likelihood of the phase-space density in
two separate steps:

1. Fitthe bulk density (without spiral)

2. Fitthe spiral (with fixed bulk)

The second step is very computationally intensive.
Our method is implemented in TensorFlow
(allows for auto-differentiation and efficient
minimisation). The code is available online:
github.com/AxelWidmark/SpiralWeighing



TESTS ON
SIMULATIONS




1D SIMULATIONS

» 10° particles representing stars and
gas, also a constant density
contribution from halo dark matter

» The data histogram in the (z, w)-
plane is constructed from stars only

» Initialised in a steady state, then
perturbed by a passing satellite

» Evolves for a few hundred Myr after
the perturbation



SIMULATION A, 400 MYR
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SIMULATION B, 500 MYR

(a) Gravitational potential
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TESTS ON SIMULATIONS

» Our method works well

» Results are especially accurate for

D400 — 500 pc), with a relative
error of only a few percent

» The precise shape of the matter
density distribution is less robust
(as for any dynamical mass
measurement)



APPLICATION T
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DATA SAMPLE CONSTRUCTION

» Data from Gaia EDR3, with supplementary radial velocity information from
legacy spectroscopic surveys (LAMOST, GALAH, RAVE, APOGEE, SEGUE, GES)

» Data quality cuts: G < 15; 65 < 3 km/s; RUWE < 1.4; ¢_ < 0.05 mas.

» Construct eleven main data samples,
labelled by an index s in range [-5,5]:
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A FEW SPIRALS (AFTER FITTING THE BULK)
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INFERRED MA
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SUMMARY OF INFERRED
GRAVITATIONAL POTENTIALS
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BARYONIC MODEL
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BARYONIC MODEL

Component pr (Mgpe™) o, (kms™!)
Molecular gas 0.0104 £ 0.00312 3.7+0.2

Cold atomic gas 0.0277 £ 0.00554 7.1+0.5

Warm atomic gas  0.0073 £ 0.0007  22.1+2.4
Hot ionised gas 0.0005 + 0.00003 39.0+4.0
Giant stars 0.0006 + 0.00006 15.5+1.6
Stars, My < 3 0.0018 £ 0.00018 7.5+2.0

Stars, 3 <My <4 0.0018 £0.00018 12.0+2.4
Stars, 4 < My <5 0.0029 £ 0.00029 18.0+1.8
Stars, 5 < My <8 0.0072 +£0.00072 185+1.9
Stars, My > 8 0.0216 +£ 0.0028  18.5+4.0
White dwarfs 0.0056 + 0.0010  20.0+5.0
Brown dwarfs 0.0015+£0.0005 20.0+5.0

This model was taken from
Schutz et al. (arXiv:1711.03103)

Suffers from some potentially
severe systematic uncertainties

Model assumes the different
components are iso-thermal
(with strictly Gaussian vertical
velocity distributions)

Gas content is highly uncertain,
difficult to measure, non-
uniform etc.



INFERRED DARK MATTER DENSITY

> The local halo dark matter density is inferred from

® (400 pc), by comparing its measured value with the
contribution from the baryonic model

> The combined statistics of data samples s € [—3,3],
including the variance coming from different Z values,

gives ®(400 pc) = 301.8 = 6.0 (km/s)?

> The baryonic model contributes 265.0 + 16.0 (km/s)?,
so its uncertainty dominates

> The inferred local halo dark matter density is
0.0085 = 0.0039 Mgpc—3 =0.32£0.15 GeVcm-3



CONSTRAINTS TO A THIN DARK DISK

> Athin dark disk, embedded within the stellar disk, can form from a dark
matter sub-component with strong dissipative self-interactions
(searched for/constrained with local measurements of the Galactic disk)

> Again, we use ©(400 pc)

For these constraints, we assume a halo dark matter density of

0.009 £ 0.003 Mgpc—3, coming from independent circular velocity curve
measurements

> Assuming a dark disk scale height < 50 pc, we place an upper 95 %
limit of 4.6 Mgpc—2, roughly twice as strong as any other limit

Even if we assume no halo dark matter, we still set the most stringent
limit (79 M@pc—z)

Our method is highly competitive compared to traditional methods



ONGOING WORK



USING THE PROPER MOTION SAMPLE

> We can see the spiral in log o number count

far away regions of the VT
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(a) Data (b) Bulk x z-mask
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Selection effects are severe, but > Our method is robust as long as the
have a spatial dependence only and shape of the phase-space spiral can

can be modelled (at least decently) be extracted from the data
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Many data samples had
to be disqualified (cells
left blank) due to severe
selection effects; others
were marked as dubious
(crossed over)

Results are reasonable
and appear robust; we
infer a thin disk scale

length of 2.5 = 0.4 kpc

Indications of broken
axisymmetry, on the

order of 30-40 %

Systematic errors are
estimated to about 10 %



OUTLOOK




FUTURE WORK

» Make more sophisticated tests on full 3d
galaxy simulations (using billion particle
simulations of Hunt et al., arXiv:2107.06294);
this is also ongoing and will be published
within a few months

» Update the baryonic model

» In a general sense, explore other applications
of non-equilibrium dynamical modelling



CONCLUSION

» Our method is competitive with traditional
methods that assume a steady state (e.g. we
set the strongest limits to a thin dark disk)

» Our method is complimentary — not subject
to the same biases, robust with respect to
severe selection effects

» Useful for measuring the potential of the
disk at large distances

» Shows that time-varying dynamical
structures are not only obstacles, but can
also be regarded as assets for dynamical
mass measurements
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Disk non-equilibrium — arXiv:2011.02490

Weighing the Galactic disk in sub-regions of the solar
neighbourhood using Gaia DR2

A. Widmark!, PF. de Salas?, and G. Monari>
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