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BACKGROUND
‣ Dynamical mass measurements are important for understanding the 

Milky Way in general, and more specifically in terms of its dark matter 

‣ The local density of dark matter is a crucial quantity for indirect and 
direct dark matter detection experiments 

‣ We might be left with gravitational information for a long time, but 
gravitational probes could themselves shed light on the particle 
nature of dark matter (substructure, subhalos, cusp/core, dark 
matter self-interaction, thin dark disk) 

‣ Steady state measurements have been in use for a century (other 
methods use stellar streams, direct stellar acceleration measurements) 

‣ However, the Milky Way is host to non-equilibrium structures, which 
has become especially clear with the Gaia survey 

‣ “The data has surpassed the models” — we need to think about new 
ways of modelling and extracting information from our increasingly 
complex image of the Milky Way



Local modelling of disk

Circular velocity curve

Global models & local observations

Global models & circ. vel. curve

Jeans anisotropic modelling of disk

Halo stars

Very local analyses are missing from list, 
for which  uncertainties are largeρDM,⊙
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‣ Results are inconsistent; uncertainties 
must be underestimated 

‣ This highlights the need to go 
beyond the common assumptions of 
an “Ideal Galaxy”: steady state, 
axisymmetry, mirror symmetry across 
the Galactic plane 

‣ Uncertainties associated with the 
baryonic distribution are still 
significant (if not dominant), and 
often underestimated



Antoja et al., Nature 561 (2018) 360–362

THE LOCAL PHASE-SPACE SPIRAL



THE LOCAL PHASE-SPACE SPIRAL
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BEYOND EQUILIBRIUM
‣ It’s possible to model the dynamics and measure the mass of 

a time-varying system 

‣ In the absence of a steady state, we must make some other 
strong assumption: 

‣ Quasi steady state, 1st order perturbation 

‣ Something is conserved (e.g. the orbits of stellar streams) 

‣ Strong prior on initial conditions (e.g. BORG, large-scale 
structure formation, Gaussian prior) 

‣ External forces acting on the system are known over time-
scales longer than the equilibration time



GENERAL 
PRINCIPLES



MAKING A SPIRAL



MODELLING ASSUMPTIONS
1. Separability of the vertical dimension 

(1d approximation) 

2. The spiral inhabits a static gravitational 
potential (neglecting self-gravity) 

3. The perturbation that gives rise to the 
spiral has no initial winding



ANALYTIC MODEL

Spiral angle 
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A SIMPLE EXAMPLE

▸ Any point on the spiral is 
associated with a vertical 
energy 

▸ Point A is purely kinematic 
energy; point B is purely 
potential energy 

▸ In the limit of high winding,  
approaches  from above 

▸ Even if winding is not very high, 
 is a smooth function; this 

strongly constrains  if we 
consider a longer segment of 
the spiral
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▸ Three spirals, sitting in three 
different gravitational 
potentials 

▸ Even though the three 
spirals have the same 
amount of winding (in terms 
of laps around the origin), 
they are clearly differentiable 
from each other

A FEW MORE 
EXAMPLES



MODEL OF 
INFERENCE



Bulk density

Gaussian mixture model, constrained to be 
symmetric with respect to z and w

Spiral angle

Full phase-space density Spiral relative density

Free parameters

MODEL OF 
INFERENCE



FITTING PROCEDURE
We fit the likelihood of the phase-space density in 
two separate steps: 

1. Fit the bulk density (without spiral) 

2. Fit the spiral (with fixed bulk) 

The second step is very computationally intensive. 
Our method is implemented in TensorFlow 
(allows for auto-differentiation and efficient 
minimisation). The code is available online: 
github.com/AxelWidmark/SpiralWeighing



TESTS ON 
SIMULATIONS



▸  particles representing stars and 
gas, also a constant density 
contribution from halo dark matter 

▸ The data histogram in the ( )-
plane is constructed from stars only 

▸ Initialised in a steady state, then 
perturbed by a passing satellite 

▸ Evolves for a few hundred Myr after 
the perturbation

105

z, w

1D SIMULATIONS



SIMULATION A, 400 MYR



SIMULATION B, 500 MYR



▸ Our method works well 

▸ Results are especially accurate for 
, with a relative 

error of only a few percent 

▸ The precise shape of the matter 
density distribution is less robust 
(as for any dynamical mass 
measurement)

Φ(400 − 500 pc)

TESTS ON SIMULATIONS



APPLICATION TO 
GAIA DATA



▸ Data from Gaia EDR3, with supplementary radial velocity information from 
legacy spectroscopic surveys (LAMOST, GALAH, RAVE, APOGEE, SEGUE, GES) 

▸ Data quality cuts:  ; ;  ;  . 

▸ Construct eleven main data samples, 
labelled by an index s in range [-5,5]: 

1. , 

2. , 

3. . 

▸ We fix 

G < 15 σRV < 3 km/s RUWE < 1.4 σϖ < 0.05 mas

R − R⊙

pc
∈ [100s − 50, 100s + 50]

Y
pc

∈ [−400, 400]

Lz

vc × [R⊙ + (100s pc)]
∈ [0.9, 1.1]

Z⊙ = {0, 10, 20} pc

DATA SAMPLE CONSTRUCTION
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A FEW DATA HISTOGRAMS



A FEW SPIRALS (AFTER FITTING THE BULK)



INFERRED MATTER DENSITIES / GRAV. POTS.



SUMMARY OF INFERRED 
GRAVITATIONAL POTENTIALS

Robust despite highly varied selection effects!



BARYONIC MODEL



BARYONIC MODEL
‣ This model was taken from 

Schutz et al. (arXiv:1711.03103) 

‣ Suffers from some potentially 
severe systematic uncertainties 

‣ Model assumes the different 
components are iso-thermal 
(with strictly Gaussian vertical 
velocity distributions) 

‣ Gas content is highly uncertain, 
difficult to measure, non-
uniform etc.



INFERRED DARK MATTER DENSITY
‣ The local halo dark matter density is inferred from 

, by comparing its measured value with the 
contribution from the baryonic model 

‣ The combined statistics of data samples , 
including the variance coming from different  values, 
gives  

‣ The baryonic model contributes , 
so its uncertainty dominates 

‣ The inferred local halo dark matter density is 

Φ(400 pc)

s ∈ [−3,3]
Z⊙

Φ(400 pc) = 301.8 ± 6.0 (km/s)2

265.0 ± 16.0 (km/s)2

0.0085 ± 0.0039 M⊙pc−3 = 0.32 ± 0.15 GeV cm−3



CONSTRAINTS TO A THIN DARK DISK
‣ A thin dark disk, embedded within the stellar disk, can form from a dark 

matter sub-component with strong dissipative self-interactions 
(searched for/constrained with local measurements of the Galactic disk) 

‣ Again, we use  

‣ For these constraints, we assume a halo dark matter density of 
, coming from independent circular velocity curve 

measurements 

‣ Assuming a dark disk scale height  pc, we place an upper 95 % 
limit of , roughly twice as strong as any other limit 

‣ Even if we assume no halo dark matter, we still set the most stringent 
limit ( ) 

‣ Our method is highly competitive compared to traditional methods

Φ(400 pc)

0.009 ± 0.003 M⊙pc−3

≤ 50
4.6 M⊙pc−2

7.9 M⊙pc−2



ONGOING WORK



USING THE PROPER MOTION SAMPLE
‣ We can see the spiral in 

far away regions of the 
disk, using the Gaia EDR3 
proper motion sample 

‣ Because Galactic latitude 
is small for distant disk 
stars, their proper motion 
in the latitudinal direction 
has a close projection 
with vertical velocity 

‣ We divide the disk into 
area cells out to a 
distance of 3.4 kpc



‣ Selection effects are severe, but 
have a spatial dependence only and 
can be modelled (at least decently) 

‣ Our method is robust as long as the 
shape of the phase-space spiral can 
be extracted from the data
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‣ Many data samples had 
to be disqualified (cells 
left blank) due to severe 
selection effects; others 
were marked as dubious 
(crossed over) 

‣ Results are reasonable 
and appear robust; we 
infer a thin disk scale 
length of  

‣ Indications of broken 
axisymmetry, on the 
order of 30-40 % 

‣ Systematic errors are 
estimated to about 10 %

2.5 ± 0.4 kpc



OUTLOOK



FUTURE WORK
▸ Make more sophisticated tests on full 3d 

galaxy simulations (using billion particle 
simulations of Hunt et al., arXiv:2107.06294); 
this is also ongoing and will be published 
within a few months 

▸ Update the baryonic model 

▸ In a general sense, explore other applications 
of non-equilibrium dynamical modelling



CONCLUSION
▸ Our method is competitive with traditional 

methods that assume a steady state (e.g. we 
set the strongest limits to a thin dark disk) 

▸ Our method is complimentary — not subject 
to the same biases, robust with respect to 
severe selection effects 

▸ Useful for measuring the potential of the 
disk at large distances 

▸ Shows that time-varying dynamical 
structures are not only obstacles, but can 
also be regarded as assets for dynamical 
mass measurements



BACKUP SLIDES



‣ Divide the local volume 
into sub-regions 

‣ Potential steep close to 
the Galactic plane 

‣ Does not imply a matter 
density surplus per se, 
but rather a very pinched 
matter density 

‣ Matter density profile 
decays too fast — result 
must be biased by non-
equilibrium

Disk non-equilibrium — arXiv:2011.02490
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