Searching for axion dark matter: from the lab to the stars

KCL Seminar 10 Nov 2021

Jamie McDonald

CP3 Université Catholique de Louvain

UCLouvain

Based on Phys.Rev.D 102 (2020) 2, 023504 and JHEP 09 (2021) 105 and 2107.01225 and 2108.13894

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- 1. Axions and Dark Matter
- 2. Detecting Axion Dark Matter
- 3. Harnessing the power of Neutron Stars as Dark Matter detectors
- 4. State of the art in stellar dark matter detection
- 5. Axion dark matter in the lab computer designed detectors and gradient descent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

6. Looking forward

Unable to explain most of the matter/energy content of the universe

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dark Matter

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Velocity Rotation Curves

Gravitational Lensing by Dark Matter

Needed To Explain Cosmology

- 4 ロト 4 週 ト 4 ヨト 4 ヨト - ヨ - のへぐ

Many Explanation of Dark Matter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Light bosons

- axions
- axion-like particles
- fuzzy cold dark matter

sterile neutrinos

weak scale

- -supersymmetry
- -extra dimensions
- -little Higgs
- Primordial black holes
- Massive compact halo objects (MaCHOs)
- Modifying gravity...

Many Explanation of Dark Matter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Light bosons

- axions
- axion-like particles
 sterile neutrinos
 weak scale ←
 -supersymmetry
 -extra dimensions
 -little Higgs
 Primordial black holes
 Massive compact halo objects (MaCHOs)
 Modifying gravity...

One popular scenario $m_{\rm DM} \sim {\rm GeV}$ (WIMPS)

PDG 2017

One popular scenario $m_{\rm DM} \sim {\rm GeV}$ (WIMPS)

PDG 2017

But so far they haven't shown up...

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Many Explanation of Dark Matter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Light bosons \rightarrow

- axions
- axion-like particles
- fuzzy cold dark matter

sterile neutrinos

weak scale

- -supersymmetry
- -extra dimensions
- -little Higgs
- Primordial black holes
- Massive compact halo objects (MaCHOs)
- Modifying gravity...

Axions

Generic class of Particle: light (pseudo) scalar: a

$$\mathcal{L}_{\mathsf{a}}=rac{1}{2}\partial_{\mu}\mathsf{a}\partial^{\mu}\mathsf{a}+V(\mathsf{a})$$

Typically couples to many particles in standard model

$$\mathcal{L}_{SM} = \frac{g_{a\gamma\gamma}}{2} a \underbrace{F_{\mu\nu}\tilde{F}^{\mu\nu}}_{\text{electromagnetism}} + g_{aN}\partial_{\mu}a\underbrace{(\bar{N}\gamma^{\mu}\gamma_{5}N)}_{\text{nucleons}} + g_{ae}\underbrace{\partial_{\mu}a(\bar{e}\gamma_{\mu}\gamma_{5}e)}_{\text{electrons}}$$

Main motivations:

- Occurs in many extensions of the SM (e.g. "string axiverse"
- Strong CP Problem Peccei, Quinn (1977)

$$\mathcal{L}_{ heta} = rac{ heta_{QCD}}{32\pi} {
m Tr} {
m {G}}_{\mu
u} { ilde {G}}^{\mu
u} \qquad heta \lesssim 10^{-10}$$

► DM Candidate - halos made from scalar fields Hui et al (2016)

(ロ) 4 目) 4 日) 4 日) 5 0 0 0

Axions

Generic class of Particle: light (psuedo) scalar: a

$$\mathcal{L}_{\mathsf{a}}=rac{1}{2}\partial_{\mu}\mathsf{a}\partial^{\mu}\mathsf{a}+V(\mathsf{a})$$

Typically couples to many particles in standard model

$$\mathcal{L}_{SM} = \frac{g_{a\gamma\gamma}}{2} a \underbrace{F_{\mu\nu}\tilde{F}^{\mu\nu}}_{\text{electromagnetism}} + g_{aN}\partial_{\mu}a\underbrace{(\bar{N}\gamma^{\mu}\gamma_{5}N)}_{\text{nucleons}} + g_{ae}\underbrace{\partial_{\mu}a(\bar{e}\gamma_{\mu}\gamma_{5}e)}_{\text{electrons}}$$

Main motivations:

- Occurs in many extensions of the SM (e.g. "string axiverse"
- Strong CP Problem Peccei, Quinn (1977)

$$\mathcal{L}_{ heta} = rac{ heta_{QCD}}{32\pi} {
m Tr} {
m {G}}_{\mu
u} { ilde {G}}^{\mu
u} \qquad heta \lesssim 10^{-10}$$

► DM Candidate - halos made from scalar fields Hui et al (2016)

(ロ) 4 目) 4 日) 4 日) 5 0 0 0

Renewed interest in axion dark matter $m_a \sim O(\mu eV)$

Axion coupling to electromagnetism

$$L_{axion} = \frac{1}{2} \partial_{\mu} a \partial_{\mu} a - g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Axion Electrodynamics

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a,$$

$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma\gamma} \dot{a} \mathbf{B} - g_{a\gamma\gamma} \mathbf{E} \times \nabla a,$$

$$\nabla \cdot \mathbf{B} = 0,$$

$$\dot{\mathbf{B}} + \nabla \times \mathbf{E} = 0.$$

Detect axion DM with EM coupling (Sikivie 1980s)

Resonant Cavity Searches

The detector must be tuned for each axion mass

Proj. Sesnsitivity. 6 yr Data

Searching for axion DM in the lab is like tuning a radio

tune \rightarrow listen (take data) \rightarrow repeat

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Narrow band search taking 10s of years to scan

Can stars get us there quicker?

Plasma:
$$\omega_{\rm p}^2 = n_e/m_e$$

$$\partial^2 \mathbf{E}(t,x) + \omega_{\mathrm{p}}^2 \mathbf{E}(t,x) = g_{a\gamma\gamma} \mathbf{B}_{\mathrm{ext}} \underbrace{\ddot{a}(t,x)}_{\mathrm{axion DM field}}, \qquad a \sim a_0 e^{-im_a t}$$

Resonant enhancement when $\omega_{\rm p} = m_a$.

Neutron Stars Are Surrounded by Plasma

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Resonant Conversion Around Neutron Stars

$$P_{\mathrm{a}
ightarrow\gamma}\simrac{g_{a\gamma\gamma}^{2}B^{2}}{rac{d}{dz}(\omega_{\mathrm{p}}(x_{\mathrm{res}}))}$$

Goldreich-Julien (1960s)

$$n_{\rm GJ}(\mathbf{r}) = rac{2\,\mathbf{\Omega}\cdot\mathbf{B}}{e}rac{1}{1-\Omega^2\,r^2\,\sin^2 heta},$$

$$\omega_{\rm p} = \sqrt{\frac{4\pi \,\alpha_{\rm EM} \,|n_{\rm GJ}|}{m_{\rm e}}},$$

The renaissance of interest (2018) Hook et al

Radial Trajectories

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One gets the following theory prediction for the sensitivity

Hook et al 2018

Very compelling deep + broad + immediate reach in parameter space!

æ

The race is on to properly model + take radio data

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

J. Darling Astrophys.J.Lett. 900 (2020) 2, L28

PSR J17452900 the first-discovered magnetar. Orbits black hole Sagittarius A^*

 $B\sim 10^{14}{
m Gauss}$

(日) (四) (日) (日) (日)

State of the art theory yet to be applied!

"Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis"

Leroy et al Phys. Rev. D 101, 123003 (2020)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Trace straight line rays to line of sight

Pulse Profiles

・ロト ・四ト ・ヨト ・ヨト

æ

Leroy et al Phys. Rev. D 101, 123003 (2020)

Rays are not straight lines! (this work)

$$\begin{aligned} \frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\rho}}{d\lambda} &= -\frac{1}{2} \partial^{\mu} \omega_{\rm p}^2 \,, \\ \frac{dx_{\mu}}{d\lambda} &= k_{\mu} \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Dark matter radio emission from the star strongly lensed!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Pulse Profiles

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

See also...

Witte et al (hep-ph/2104.07670)

Line Shape

Naively, by conservation

$$\omega_{\gamma} = E_{a} \simeq m_{a} + rac{1}{2}m_{a}v_{\mathrm{DM}}^{2}$$

So the signal naively has

Central Frequency : $\omega_c = m_a$

- 日本 本語 本 本 田 本 王 本 田 本

So

Narrower signals are easier to find

イロト 不得 トイヨト イヨト

3

So good understanding of freq. dependence is crucial!

Doppler Broadening - time-dependent effects

$$\delta\omega\simeqrac{1}{2\omega}\int dt'\partial_t\omega_{
m p}^2(t',{f x}(t'))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Line Shape

 $\leftarrow \textit{frequency} \rightarrow$

・ロト・西ト・西ト・西ト・日・ シック

First Constraints with Ray-Tracing from galactic centre magnetar

Battye, Darling, McDonald, Srinivasan (2021)

main uncertainty: DM density near galactic centre (also more work needed to better understand constraint sensitivity to magnetosphere structure)

Axion Dark Matter Detection in the Lab

Dark Matter Detection in the Lab

There is a large **zoo** of axion dark matter detectors

Current Design Process: trial and error, flashes of inspiration?

Current Design Process: trial and error, flashes of inspiration? **Better Design process?** computer-led/gradient descent?

(McDonald 2108.13894)

$$X_{n+1} = X_n - \gamma_n \nabla_X F(X_n)$$

Designs : X_n **learning rate** : γ_n **cost/objective function:** $F(X_n)$ (i.e. DM signal)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\begin{split} \nabla \cdot \mathbf{D} &= -g_{\mathrm{a}\gamma\gamma} \mathbf{B} \cdot \nabla a \,, \\ \nabla \times \mathbf{B} - \dot{\mathbf{D}} &= g_{\mathrm{a}\gamma\gamma} \dot{a} \mathbf{B} - g_{\mathrm{a}\gamma\gamma} \mathbf{E} \times \nabla a \,, \\ \nabla \cdot \mathbf{B} &= 0 \,, \\ \dot{\mathbf{B}} + \nabla \times \mathbf{E} &= 0 \,, \end{split}$$

$$-
abla^2 \mathbf{E} +
abla (
abla \cdot \mathbf{E}) + oldsymbol{arepsilon} \cdot \ddot{\mathbf{E}} = g_{a\gamma\gamma} \ddot{a} \mathbf{B}.$$

Cost function $F(X) : U\left[\left\{\omega_{p}^{(i)}\right\}\right] = \int dV \left[\partial_{\omega}(\omega \operatorname{Re}[\varepsilon]) \mathbf{E}^{2} + \mathbf{B}^{2}\right].$ X_{n} designs : $\varepsilon(\mathbf{x})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

N layer design in 1D

$$\varepsilon^{(i)} = 1 - \frac{\omega_{\mathrm{p}}^{(i)\,2}}{\omega^2 + i\Gamma^{(i)}\omega}, \qquad 1 \le i \le N,$$

$$-rac{d^2 E_{\parallel}}{dx^2}+\omega^2arepsilon E_{\parallel}=g_{a\gamma\gamma}\omega^2a_0B_0,$$

Cost Function and coordinates:

$$F[X] \equiv -U\left[\left\{\omega_{\mathbf{p}}^{(i)}\right\}\right], \qquad X = \left\{\omega_{\mathbf{p}}^{(1)}, \vdots, \vdots, \underline{\omega}_{\mathbf{p}}^{(N)}\right\}, \quad \mathbb{R} \to \mathbb{R}$$

Larger Number of Layers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Obviously this just scratches the surface

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Detector exterior geometry?
- 2. Other bulk properties: magneto-electric materials?
- 3. Tuneability?
- 4. higher dimensions?
- 5. more sophisticated gradient descent algorithms?

Conclusions

Neutron stars

- Good progress made in ray-tracing future follow up work coming soon (Witte + McDonald)
- dark matter density remains uncertainty near galactic centre
- need to better understand sensitivity to magnetosphere structure **Detector designs**
- extend to larger array of design properties and higher dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- can one derive a mathematical upper bound?

Thanks for listening!

(ロ)、(型)、(E)、(E)、 E) の(()