Neutrons in the DUNE experiment

Simon JM Peeters for the DUNE collaboration s.j.m.peeters@sussex.ac.uk

Neutron physics in Neutrino Astronomy IoP workshop at King's College London, 2019.11.08

Overview of the DUNE experiment

- Supernova detection and solar neutrinos
- Sources of neutrons in DUNE
- Neutron interaction and propagation in Liquid Argon

An international science collaboration

1093 collaborators from 188 institutions in 32 countries

4 2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

Deep Underground Neutrino Experiment

- 1.5 km underground
- On-axis 40 ktonne LAr TPC
- ν_{μ} disappearance and ν_{e} appearance to measure MH, CPV, and mixing angles
- Large detector, capable of observing supernova neutrinos, solar neutrinos, nucleon decay and other BSM processes

- New ν_μ beam:
 1.2 MW @ 80 GeV protons,
 upgradable to 2.4 MW
- It can run in neutrino and antineutrino modes by switching the polarity of the magnetic horns.
- Wide band neutrino beam.
- Highly capable near-detector

At Fermilab

Near Detector Hall at edge of Fermilab site Initial upward pitch, 101 mrad pitch to get to South Dakota

Near detector design

Moveable between on-axis and off-axis: PRISM concept

Designed to constrain flux and cross section systematics in oscillation analysis:

- LArTPC with pixelated readout (50 tonne)
- Multi-Purpose Detector (MPD)
 - Magnetised high-pressure GAr TPC (HPgTPC) (1 tonne) + ECAL
- Three-Dimensional Scintillator Tracker-Spectrometer (3DST-S)

574 m from LBNF target ~60 m underground

Far detector design

Two designs being considered:

Single Phase (LAr) and Dual Phase (LAr + GAr)

- Single Phase FD uses modular drift cells (scalable)
- Suspended Anode and Cathode Plane Assemblies (APAs and CPAs), 3.6 m drift, 500 V/cm field
- Wrapped wire to reduce number of readout channels needed and cabling complexity
- Four 10 ktonne modules deployed in stages

protoDUNE(s)

- Two 6 x 6 x 6 m3 prototpyes in charged testbeam
- Test installation, commissioning, and
- protoDUNE SP operating since September 2018, recently protoDUNE DP started operations

15

protoDUNE @ CERN

Signal formation

Argon scintillation light (~ns) detected by photon detectors, providing to

12 2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

2 GeV - Electron shower

protoDUNE

Supernova and solar neutrinos in DUNE

Supernova neutrinos in DUNE

- DUNE will be able to observe the v_e flux _ through capture on ⁴⁰Ar
- Unique sensitivity to the electron flavour component of the flux
- Provides information on time, energy and flavour structure

us

Supernova neutrinos in DUNE

 $\overline{\nu}_e + {}^{40} \operatorname{Ar} \rightarrow e^+ + {}^{40} \operatorname{Cl}^*$

 $\nu_x + e^- \rightarrow \nu_x + e^-$

Total

- **Requires an efficient** lacksquarenon-beam trigger: neutrons could mimic a signal
- DAQ goal for galaxy: trigger on 60 electron neutrinos (of at least 10 MeV) in 10 s (assuming a flat time distribution)
- Rates depend on core • collapse model, v oscillation models, and distance.

2720

230

350

3300

15 2	2019.11.08	Simon JM Peeters	Neutrons in DUNE	IoP workshop @ KCL
------	------------	------------------	------------------	--------------------

3350

160

260 3770

Solar neutrinos

DUNE has the potential to record about 3,000 solar neutrinos/ktonne-year

Physics objectives

FIG. 1. Present measurements $(1, 2, \text{ and } 3\sigma)$ of neutrino mixing with solar [1–6] and reactor [15] neutrinos.

FIG. 2. Future precision of neutrino mixing with solar (DUNE alone; 1, 2, and 3σ) and reactor (JUNO alone; 3σ [18,22]) neutrinos, using present best-fit points and 100 kton-yr for each.

Solar neutrino observation

Needs a good understanding of the detector and neutrons.

US

GINE

Importance of neutrons in DUNE

- To turn neutrino physics into a precision science, we need to understand the complex neutrino nucleus interactions
 - Neutrons carry away a large fraction of energy
 - Neutron yield is model dependent
 - Neutrons are hard to detect in LArTPC
- Understanding the neutrons are also essential for low energy physics
 - Modelling the supernova and solar neutrino events

Particle trajectories from a simulated SN event in DUNE

Importance of neutrons in DUNE

Charged-current absorption:

$$\nu_{e} + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^{*} + e^{-}$$
At least 25 transitions
have been observed
indirectly
g.s. to g.s. is
3rd forbidden
transition)
transition

Low-energy event

		Average Fraction of Final-State KE			
BR(%)	Event Type	e ⁻	γ	n	р
82.5%	e ⁻ + γ s only	75.6%	24.4%	0%	0%
15.9%	single n	67.3%	16.2%	16.0%	0%
1.4%	single p	54.0%	14.1%	0%	31.0%
0.2%	other	44.7%	14.1%	1.5%	2.6%
100%	all events	73.9%	22.9%	2.5%	0.4%

Courtesy S. Gardiner

Marley event generator Model of Argon Reaction Low-Energy Yields

https://www.marleygen.org gardiner@fnal.gov

Neutrons need to be distinguished from neutrinos events for supernova neutrinos(online) Neutrons need to be distinguished from neutrino events for solar neutrinos (offline)

Sources of neutrons in DUNE

22 2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

Overview

Dominant (large mass):

- Rock (²³⁸U/²³²Th)
- Shotcrete (²³⁸U/²³²Th)
- Support structure (1.5 ktonne) ($^{238}U/^{232}Th/^{56}Fe(\alpha,n)/^{54}Fe(\alpha,n)$)

Subdominant (low mass/activity):

- ²²²Rn in LAr: source of αs:
 ⁴⁰Ar(α,n)
- Insulation (glass fibre) (²³⁸U/²³²Th)
- Cryostat steel (²³⁸U/²³²Th,⁵⁶Fe(α,n)/⁵⁴Fe(α,n))
 - TPC CuBe wires $Be(\alpha,n)$

 APA steel / materials (²³⁸U/²³²Th)
 Also: cosmogenically generated neutrons

Support structure

Background mitigation

- Rock & shotcrete: considering shielding (water or plastics)
- Steel support structure: quality control
- Internal material: background screening, minimise exposure to mine air, maximise air from surface
- Internal radioactivity (LAr): background screening and quality control of filter materials

Possible effect of screening: Arxiv:1808.08232

Screening in 'waffle structure'

Depth [cm]	Water Shielding [Hz]	Waffle Shielding [Hz]
0	8	31
10	7	9.4
20	0.7	2.6
30	0.1	0.9
40	0.02	0.4

(expensive and poses many challenges)

John Beacom

But, do neutrons *really* move deep into the volume?

...and how well do we understand the capture final states?

Simulation is computing intense!

(but the challenge has been taken up enthusiastically!)

neutrons ĭn liquid argon

28 2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

Neutron capture cascade

Strongest trans	Tar sition Eγ=	get Nucleus= ⁴⁰ Ar 167.30+-0.00 keV	%Iy=74.03+-0.00	ENDF Data Base
Εγ (keV)	ΔEγ (keV)	Iγ/Iγ(max) (%)	Δ(Iγ/Iγ(max))	(CapGam)
167.30 348.70 516.00 837.70 867.30 1044.30 1186.80 1354.00 1828.80	0.20 0.30 0.30 0.30 0.60 0.40 0.30 0.40 1.20	Le is a m $M_{23} =$ Cl	t M_{ij} be a mathematical member of casca = 1, $M_{33} = 0$, M_{33} early, every case	rix whose elements are all 0 and 1 in order to indicate if a certain gamma of energy E_i de j . For example, if cascade $j = 3$ were composed of gammas 1, 2, 5 then $M_{13} = 1$, $I_{43} = 0$, $M_{53} = 1$, with all the rest of the elements in the row being 0.
1881.50 1972.70 2130.80 2229.50 2291.70	1.00 1.20 0.80 2.00 2.00	1.05	0.00	$Q = \sum_{i=1}^{n} M_{ij} E_i \tag{2}$
2432.50 2566.10 2614.40 2668.20 2668.20	0.80 0.80 0.80 2.00 2.00	1.05 3.51 3.65 0.63 0.63	0.00 0.00 0.00 0.00 0.00	also, the line intensities are given by $I_i = \sum_{j=1}^m \beta_j M_{ij}$ summing over all the cascade schemes:
2781.80 2810.60 2842.60 3089.50 3111.40	1.50 0.80 1.00 1.00 2.20	2.13 7.42 1.11 1.38 0.50	0.00 0.00 0.00 0.00 0.00 0.00	With this, you can show: $\sum_{j=1}^{m} \beta_j = \frac{1}{Q} \cdot \sum_{i=1}^{n} I_i E_i = 1$
3111.40 3150.30 3365.60 3405.50 3405.50 3452.00 3564.70	2.20 1.00 2.50 2.50 1.00 2.50	0.50 5.02 5.28 0.09 0.09 2.51 0.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ignoring repeated lines, CapGam gives 0.912: off by about 9%!?
3658.70 3700.60	1.80 0.80	0.31 12.31	0.00	

Neutron capture in LAr

n + 40 Ar $\rightarrow {}^{41}$ Ar^{*} : dominant n + 36 Ar $\rightarrow {}^{37}$ Ar^{*}

Radiative neutron capture on Argon results in an excited atom of the next heaviest argon isotope.

The excited argon isotopes deexcite with very specific total energy: 6.1 MeV for ⁴¹Ar, 8.8 MeV for ³⁷Ar.

This energy is carried away by at least one photon on the case of ³⁷Ar and at least two photons in the case of ⁴¹Ar.

Hardell, R. and Beer, C., 1970. Thermal Neutron

Capture in Natural Argon. Physica Scripta, 1(2-3), p.85.

Neutron capture in LAr

kT = (8.617x10⁻¹¹ MeV/K)(293 K) =2.53x10⁻⁸ MeV (for DUNE this would be 0.75x10⁻⁸ MeV)

Eneutron $\sigma(n, \gamma)$ uncertainty Author Year MeV barns barns 2.53E-08 0.51 0.025 1969 N.RANAKUMAR+ 2.53E-08 0.723 0.025 1965 R.L.D.FRENCH+ 2.53E-08 0.63 0.02 1963 W.KOEHLER R.L.Macklin+ 0.005 0.0032 0.00018 1989 0.01751 0.02442 1989 R.L.Macklin+ 0.01702 0.136 0.0022 0.0008 1959 N.A.BOSTROM+ 0.37 0.00119 6.00E-05 2014 M.Bhike+ 0.03 0.00254 0.0001 2000 Z.Y.Bao+ S.F.Mughabghab 0.03 0.00245 0 2006

0.00255

0.0234

TABLE 1 PUBLISHED MEASUREMENTS OF THE NEUTRON CAPTURE CROSS SECTION ON ARGON. THERMAL MEASUREMENT ARE SHOWN IN BOLD

0.00015

2002

H.Beer+

Three measurements from 1960's All claiming ~5% uncertainty, but differing by about 50%

..also averaged over a thermal spectrum from a reactor rather than as a function of energy

31

2019.11.08

New measurement: ACED Argon Capture Experiment at DANCE

V. Fischer,¹ L. Pagani,¹, L. Pickard,¹ A. Couture,² S. Gardiner,¹ C. Grant,³ J. He,¹ T. Johnson,¹ E. Pantic,¹ C. Prokop,² R. Svoboda,¹ J. Ullmann,² and J. Wang¹ (ACED Collaboration)

¹University of California at Davis, Department of Physics, Davis, CA 95616, U.S.A. ²Los Alamos National Laboratory, LANSCE, Los Alamos, NM 87545, U.S.A. ³Boston University, Department of Physics, Boston, MA 02215, U.S.A.

DANCE is located on Time-Of-Flight beam at Los Alamos TOF can discriminate energy from 0.01 eV to ~10⁵ eV

Neutron transport

Effective neutron mean free path could be ~30 m! (ENDF: as currently in GEANT4)

Well-placed neutron source...

According to GEANT4...

...but is this correct??

35 2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

Experimental data

- At 57 keV, the theory predicts that there is a "deep" anti-resonance dip
- Previous measurement (Winters '91) doesn't agree with the theory (a factor 100 difference)
- The sensitivity of previous measurement is limited
- Measurement needs to be done with high precision

Measurement precision

R.R. Winters, R.F. Carlton, C.H. Johnson, N.W. Hill, and M.R. Lacerna, Phys. Rev. C 43 492 (1991)

ARTIE

Argon Resonant Transport Interaction Experiment

Measurement of 57 keV neutron anti-resonance in ⁴⁰Ar at LANSCE (Los Alamos Neutron Science Center).

ARTIE

Argon Resonant Transport Interaction Experiment

October 8-20 beam run at LANL

- Beam off: understand constant-in-time backgrounds
- Beam on, shutter closed: understand the beam-related backgrounds (gammas, skyshine neutron)
- Liquid argon filled, beam on: sample-in neutron transmission counting
- Gaseous argon filled, beam on : sample-out neutron transmission counting
- Aluminium filter in, beam on: understand the background from scattering in the beam pipe
- Carbon target, beam on: reference material measurement

Result expected before the end of the year

Courtesy: Jing-Bo Wan/Bob Svoboda

Summary

- DUNE is an exciting neutrino experiment that will provide loads of interesting physics in the next decade
- For low-energy physics, such as supernova and solar neutrinos, neutrons are an important background
- Care is being taken in the design and development of the DUNE detector module to minimise the neutron backgrounds
- Neutron interactions in Ar need to be understood in detail: we are improving our understanding

2019.11.08 Simon JM Peeters | Neutrons in DUNE | IoP workshop @ KCL

41

Nucleon decay

Neutrons also come in the FSI for nucleon decay

- Effects of FSI on K⁺ are being updated for the TDR
- GENIE hN2015 intranuclear hadron transport model shown on the left has updated
- About 94% of the FS K⁺ are above the expected threshold of 30 MeV

Courtesy: Bob Svoboda

Oscillation physics

Oscillation physics

Mass Ordering Sensitivity

CP Violation Sensitivity

Oscillation physics

Mass Ordering Sensitivity

CP Violation Sensitivity

Neutrino cross sections on Ar

• Elastic scattering (ES) on electrons

 $\nu + e^{-} \rightarrow \nu + e^{-}$

Charged-current (CC) interactions on Ar

$$\begin{array}{|c|c|c|c|c|}\hline \hline \nu_e + \ ^{40}Ar \rightarrow \ ^{40}K^* + e^- \\ \hline \overline{\nu_e} + \ ^{40}Ar \rightarrow \ ^{40}Cl^* + e^+ \\ \hline \hline E\overline{\nu_e} > \ 7.48 \ \mathrm{MeV} \\ \hline \end{array}$$

Neutral current (NC) interactions on Ar

$$v + {}^{40}\mathrm{Ar} \rightarrow v + {}^{40}\mathrm{Ar}^*$$

Ev > 1.46 MeV

