

Cosmogenic Neutron Production in SNO/SNO+

J R Wilson 8th November 2019, KCL

Outline

- Experimental Overview SNO, SNO+
- Cosmogenic Neutrons
 - Motivation
 - •SNO results
 - SNO+ measurement status

Experimental Overview

SNO+ commissioning – H2O target

SNG

SNO+ scintillator target

Neutron capture Overview

SNO – D2O target (+ salt)

n capture on ²H \rightarrow 6.25MeV γ , 10s of ms n capture on ³⁵Cl \rightarrow 8.6MeV γ s, few ms

SNO+ commissioning – H2O target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms SNO+ scintillator target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms

Why bother?

- Muons penetrate even to deep underground laboratories
- Cosmic Muon spallation products present a background for many weak signal searches
 - Long lived products time veto results in detector dead time
 - Neutron spallation cross section 2 orders of magnitude higher than the other long lived spallation daughters.
- SNOLAB has access to a low rate high energy cosmic muon flux for which neutron production yield is not well studied.
- Unique opportunity to measure same flux with same detector and 3 different media

5

Cosmogenic Neutron production knowledge so far

F. An et al, Cosmogenic neutron production at Daya Bay, Phys Rev D 7, 052009, Mar 2018

Cosmogenic Neutron production knowledge so far

F. An et al, Cosmogenic neutron production at Daya Bay, Phys Rev D 7, 052009, Mar 2018

Cosmogenic Neutrons

Density of capture medium

Neutron capture Overview

SNO+ commissioning – H2O target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms

SNO+ scintillator target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms

SNO neutron capture efficiencies

B. Aharmim et al. Cosmogenic neutron production at the Sudbury Neutrino Observatory, 595 2019, https://arxiv.org/abs/1909.11728

FIG. 8. (Color online) Number of detected neutron followers per muon, in Phases I (left) and II (right). Each entry to the histograms represents one muon.

FIG. 11. (Color online) Lateral capture distances from track, in Phases I (left) and II (right).

n capture Overview

n capture on ²H \rightarrow 6.25MeV γ , 10s of ms n capture on ³⁵Cl \rightarrow 8.6MeV γ s, few ms

SNO+ commissioning – H2O target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms SNO+ scintillator target

n capture on ¹H \rightarrow 2.2MeV γ , 0.2ms

SNO+ Trigger Efficiency, Water phase

Trigger efficiency of N100 trigger (MC), paper in preparation

SNO+ AmBe calibration

⁹Be (α,n) ¹²C*

 $L^{12}C + \gamma$

(60% time)

Q = 1.261 MeV Q = 4.44 MeV

Source activity ~67n/s

SNO+ AmBe Calibration

Use standard detector trigger settings and low level analysis procedures Select by timing coincidence of events: E1 > 15hits, E2> 4hits

Trigger efficiency = 50% in central regions Highest known in water Cherenkov detectors Paper in preparation

Muon induced neutrons (SNO+ H₂O) - Simulation

SNO+ optimized neutron selection

Plot by Billy Liggins, SNO+ thesis

Detector ringing after a muon

SN

Cosmogenic Neutrons

2.2 MeV

γ

n

Calibrate simulation against AmBe data Still rely on Geant4 extrapolation to higher Energies

Impurity correction Mu efficiency bac

Muon correlated backgrounds backgrounds

$$N_{\rm obs} = (\zeta + \epsilon) \cdot N_n + B_\mu + B_{\rm R}$$

Apply selection to non-muon following data

Analysis Outlook

SNO data:

		% With followers	% With followers
	# Muons	in data	in MC
Phase I	21485	$(2.9\pm 0.12)\%$	$(3.2 \pm 0.01) \%$
Phase II	31898	$(5.8 \pm 0.13)\%$	$(5.7\pm 0.01)\%$

SNO+ data period much shorter so less muons,

but capture cross section on H much greater than on D or Cl

but neutron detection efficiency much lower

6110 muons examined so far, expect to at least double the data set

In scintillator, we will have close to 100% efficiency to detect 2.2MeV γ s Will be able to use neutrons as part of three-fold coincidence tag to identify longer lived cosmogenic isotopes like ¹¹C.

 H_2O

SN

Summary

- SNOLAB depths give access to low rate high energy cosmic muon flux
- Unique opportunity to measure cosmogenic neutrons on different targets (D₂O, H₂O, LAB) with same detector
- SNO has published cosmogenic neutron measurement
 - Large data sample allows tests of Monte Carlo models as well as yield measurement
- SNO+ calibrations show excellent neutron detection efficiency for H₂O Cherenkov detector
 - Cosmogenic neutron measurement underway.

Back up

Phase	Target	Live Time (d)
Ι	D_2O	306.4
II	$D_2O + 0.2\%$ NaCl	478.6
III	$D_2O + NCDs$	387.2

TABLE I. Duration and live time for each operational phase.