Cornering the Hubble tension by studying systematics and reconstructing the local Universe with supernovae HOSTFLOWS (PID2020-115253GA-100)

Lluís Galbany, RYC fellow, ICE-CSIC (Barcelona)

UNIÓN EUROPEA

EI FSE invierte en tu futuro

Outline of the talk

Intro on SNIa cosmology

- Problem
- Approach A
- Current work on A
- Approach B
- Current work on B

(~10 min)

Only PhD students

Full audience

(~5 min) (~15 min) (~10 min) (~5 min)

What is exploding?

CO white dwarf (WD) in a binary system single/double degenerate

How is it exploding?

Merging/compression/He layer burn/collision Detonation/deflagration/double-detonation Chandrasekhar/sub-Chandrasekhar mass

Most probably a mixture of scenarios and explosion mechanisms

а

-16

١	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
I	
ł	

а

-16

١	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
I	
ł	

SNIa cosmology

SNIa are the most precise extragalactic distance indicators (uncert. 5%)

Two empirical correlations: peak brightness vs brightness decay peak brightness vs color

Standardized peak brightness

 $\mu(z)_{\rm SN} = m(z) - M = (m_{\rm obs} + \alpha x 1 - \beta c - A_{\rm MW})$

 $\mu(z)_{\text{model}} = 5 \log_{10}(d_L/10pc)$ $d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda (a+z)^{3(1+w)}}}$

$$+K_{x,y}) - M$$

SNIa cosmology

Recent (>2010) cosmological analysis found a dependence between the Hubble residual* and properties of the SN host galaxy

*deviation between the distance from the best cosmological model and the SN distance

Evidence for two populations?

SNIa rates and delay time distribution (DTD) models are consistent with two populations: prompt/delayed.

Continuous, though.

This is consistent with a young (~1 Gyr) and an old distinct SNIa populations.

Their ratio would evolve with redshift

SNIa environment

to old populations, that evolve with z!

- Two different populations, one associated to young and other
- But mass should be just a proxy for another other parameter...

(Non-cosmological) local SNIa environment see also Timmes+03 luminosity **Redder SNIa more associated to 3.0** HII regions 0.8 FRACTION OF TOTAL SNe And found more centrally within $\bigwedge_{\mathbf{I}}$ 0.6 ^{°N} hosts Ni mass 'Blue' SNe (27) 'Red' SNe (27) SNII (163.5) Bravo, Badenes+10 0.04 0.2 Metallicity Anderson+15 -20.0 **Color corrected magnitudes** 0.0 0.2 0.4 0.6 8.0 0.0 1.0 FRACTION OF CUMULATIVE Ha SF depend 8.8 -19.5 on local metallicity **8.7**₽ -β C -19.0 8.6 RBB 8.5 -18.5 8.4 ⊱ -18.0 8.3 ⊨ **Red SNe in metal-rich** Moreno-Raya+16 8.2**-**Moreno-Raya+16 environments 8.2 8.3 8.4 8.5 8.6 8.7 0.5 1.0 1.5 0.0 SNe la Color Metallicity

End of the 1st part

Cornering the Hubble tension by studying systematics and reconstructing the local Universe with supernovae HOSTFLOWS (PID2020-115253GA-100)

Lluís Galbany, RYC fellow, ICE-CSIC (Barcelona)

UNIÓN EUROPEA

EI FSE invierte en tu futuro

Outline of the talk

Intro on SNIa cosmology and IFS (~10 min)

- Problem
- Approach A
- Current work on A
- Approach B
- Current work on B

Only PhD students

Full audience

(~5 *min*) (~15 min) (~10 min) (~5 *min*) (~10 min)

Problem *Hubble tension*

H₀ Planck, Λ CDM = (67.4 ± 0.5) km s⁻¹ Mpc⁻¹

 $H_{0 \text{ SHOES}} = (73.2 \pm 1.3) \text{ km s}^{-1} \text{ Mpc}^{-1}$

flat – ΛCDM

Problem Hubble tension

flat – ΛCDM

Distance ladder

Cepheids and SNe la

Geometric distances to calibrate Cepheids MW paralaxes LMC DEBs M31 DEBs NGC4258 maser

Wesenheit magnitudes measured as

$$m_{X,i,j}^W = m_{X,i,j} - R (V_{i,j} - I_{i,j}) \quad R = A_X / (A_V - A_I)$$

And modeled as:

 $m_{X,i,i}^{W} = \mu_{i} + M_{X}^{W} + b_{W} \log_{10} P_{i,i} + Z_{W} \Delta \log(M/H)_{i,i}$

Wesenheit magnitudes measured as

$$m_{X,i,j}^W = (m_{X,i,j}) - R(V_{i,j} - I_{i,j}) \quad R = A_X / (A_V - A_I)$$

And modeled as:

 $m_{X,i,j}^W = \mu_i + M_X^W + b_W \log_{10}(P_{i,j}) + Z_W \Delta \log(M/H)_{i,j}$

Wesenheit magnitudes measured as

$$m_{X,i,j}^W = (m_{X,i,j} - R) (V_{i,j} - I_{i,j}) \quad R = A_X / (A_V - A_I)$$

And modeled as:

 $m_{X,i}^W$ $+ (b_W) \log_{10}(P_{i,j}) + (Z_W) \Delta \log(M/H)_{i,j}$ M_X^W

Wesenheit magnitudes measured as

$$m_{X,i,j}^W = (m_{X,i,j} - R) (V_{i,j} - I_{i,j}) \quad R = A_X / (A_V - A_I)$$

And modeled as:

$$m_{X,i,j}^W = \mu_i + M_X^W + b_W \log_{10} P_{i,j} + Z_W \Delta \log(M)$$

R dust/intrinsic -> 2,n *R* P-L fast/slow -> 2 b_W log(M/H) estimate, and global Z_W

(see e.g. Mörtsell+21)

Hoffman+16

Hoffman+16

 $m_{X,i,j}^{corr} = m_{X,i,j} + \alpha x_1 - \beta c + \gamma (M_{host})$

 $m_{X,i,j}^{corr} = M_X + 5 \log_{10}(d_L/10pc)$ $d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda (a+z)^{3(1+w)}}}$

(see e.g. Brout+21)

 $m_{X,i,j}^{corr} = (m_{X,i,j}) + \alpha x_1 - \beta c + \gamma (M_{host})$

$m_{X,i,j}^{corr} = M_X + 5 \log_{10}(d_L/10pc)$ $d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M(1+z)^3 + \Omega_\Lambda(a+z)^{3(1+w)}}}$

(see e.g. Brout+21)

 $m_{X,i,j}^{corr} = (m_{X,i,j}) + (\alpha x_1) - (\beta c) + (\gamma (M_{host}))$

 $m_{X,i,j}^{corr} = M_X + 5 \log_{10}(d_L/10pc)$ $d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda (a+z)^{3(1+w)}}}$

(see e.g. Brout+21)

$$m_{X,i,j}^{corr} = (m_{X,i,j}) + (\alpha x_1) - \beta c + \gamma (M_{host})$$

$$m_{X,i,j}^{corr} = M_X + 5 \log_{10}(d_L/10pc)$$
$$d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_M(1+z)^3 + \Omega_\Lambda(a+z)^{3(1+w)}}}$$

 β dust/intrinsic -> 2,n β (see e.g. Brout+21) γ environment/physics Natural NIR standard candles

Reddening and extinction

Most of the short wavelength light is scattered away from its original direction.

Extinction/reddening law

Several parametrizations: Cardelli & O'Donnell (CCM), Fitzpatrick, etc.

In the MW the average CCM measured from our position to other stars is R=3.1 (2.5-5.5)

This value is generally assumed for other environments and galaxies.

Extinction/reddening law

The extinction law is determined by physical properties like composition (graphite and silicate grains) and size distribution

Smaller Rv is associated with smaller grain size!

Extinction/reddening law

The extinction law is determined by physical properties like composition (graphite and silicate grains) and size distribution

Smaller Rv is associated with smaller grain size!

Common SNIa color laws

 $\mu(z)_{\rm SN} = m(z) - M = (m_{\rm obs} + \alpha x 1 - \beta c - A_{\rm MW} + K_{x,y}) - M$

If β is assumed to be a general description of the reddening law, then the inferred extinction law is not common: *R*~2

The magnitude-color relation of SNe in reality comes probably from two effects:

- 1. intrinsic (temperature, ionization evolution)
- 2. extrinsic (dust in the ISM)

Multiple SNIa color laws

Although properly modeling colors reveals that most SNe are consistent with a normal Rv=3.1 reddening law (Chotard+11,Scolnic+14), there is diversity in SNe with different brightness-color relations.

«Either SN intrinsic colors are more complicated that can be described with a single light-curve shape parameter or dust around SN is very unusual»

Individual SNIa color laws

Extremely peculiar extinction laws found towards some SNe!

Individual SNIa color laws

Light-curve fitters with individual color-law, but No Hubble diagrams with individual color-laws!

Other dust indicators

Host galaxy reddening

$$\hat{\tau}_{\lambda,2} = \frac{\hat{\tau}_2}{4.05} [k'(\lambda) + D(\lambda)] \left(\frac{\lambda}{\lambda_V}\right)$$

(Past) Approach **Correcting Reddening Intelligently for SN cosmological probes**

4-year Portuguese nationally funded project (PI: A. M. Mourão)

PTDC/FIS-AST/31546/2017 1/09/2018 - 31/08/2022

Ana Mourão

(Current) Approach The HOSTFLOWS project

- A- H0 systematics: SN/Cepheid phot/spec/pol and host galaxy IFU/pol to study extinction, environment and improve standardization.
- B- Cosmography of Laniakea: <u>NIR SNIa</u> survey to measure peculiar velocities and map dark matter in our supercluster

3-year Spanish nationally funded project (PI Galbany; PID2020-115253GA-I00) 1/09/2021 - 31/08/2024

Cristina Jiménez PhD student

Tomás Müller Postdoc

(Current) Approach The HOSTFLOWS project

IFS data of SN/Cph host galaxies

PISCO, LG et al. 2018 AMUSING, LG et al. 2016

A-H0 systematics

phot/spec

CAFOS/VLT

CPG+in prep.

Fiber bundle

Lenslet

Fiber bundle

Lenslet

Fiber bundle

Lenslet

Image slice at a single infrared wavelength

Fiber bundle

Lenslet

Field of view Spectral Resolution R~500-1200 Number of spectra Spatial Resolution Wavelength coverage

PMAS

70"×70" ~5,000 sp 1"/spaxel 3700-7500

MUSE

60"x60" R~1700-3500 ~90,000 sp 0.2"/spaxel 4650-9300

Field of view Spectral Resolution Number of spectra Spatial Resolution Wavelength coverage PMAS

70"x70" R~500-1200 ~5,000 sp 1"/spaxel 3700-7500

MUSE

60"x60" R~1700-3500 ~90,000 sp 0.2"/spaxel 4650-9300

Declination (J2000)

Sara Muñoz-Torres in prep.

IFS data of all 19 SHOES hosts

Sara Muñoz-Torres in prep.

IFS data of all 19 SHOES hosts

Measuring O abundance at Cepheids location

Sara Muñoz-Torres in prep.

IFS data of all 19 SHOES hosts

Measuring O abundance at Cepheids location

Local Rv from stellar and gas-phase extinction (non-universal)

Sara Muñoz-Torres in prep.

SSP synthesis on low-z MUSE cubes

A.S.Afonso+21

SSP synthesis on low-z MUSE cubes

Best fits used for constructing artificial high-z galaxies

A.S.Afonso+21

SSP synthesis on low-z MUSE cubes

Best fits used for constructing artificial high-z galaxies

Remeasure mass and look for biases

Effect: -0.6% in w +0.6% in Ω_M

SSP synthesis on low-z MUSE cubes

Best fits used for constructing artificial high-z galaxies

Remeasure mass and look for biases

Effect: -0.6% in w +0.6% in Ω_M

Ongoing study of dust

A.S.Afonso+21

Multiple SN luminosity - color relations

Test cosmological fits with varying beta 232 mock distributions:

AB-model (Perrett+12 rates) Mass step model Stretch (X) model Burns/Mandel model z-model

Multiple SN luminosity - color relations

Multiple SN luminosity - color relations

Cosmological fit with 1-4 beta, in bins of mass and color

González-Gaitán+21

(Current) Approach The HOSTFLOWS project

Tully+14

B- Cosmography of Laniakea

(Current) Approach The HOSTFLOWS project

B- Cosmography of Laniakea

Construct a NIR SNIa sample to:

- 1. Infer the peculiar velocity field within Laniakea [$v_p = cz - H_0D$]
- 2. Reconstruct the DM distribution on intermediate scales
- 3. Infer cosmological parameters related to the amplitude of the fluctuations of the early universe (σ_8) and the growth rate of structure (fD)
- 4. Test gravity models via measurements of the growth index γ

Tully+19

Why SNIa over TF/FP

Tully-Fischer (TF) and Fundamental Plane (FP) method distances are not precise beyond z=0.03 (~400 Mly)

SN Ia Systematics are minimized compared to TF and FP

Goal: Achieve a peculiar velocity measurement of 300 km/s w.r.t. the Hubble Flow at 1200 Mly (i.e. 3% in distance) by observing a few 1000 SN Ia & making use of 1/sqrt(N) Burns et al in prep.

Approach *The HOSTFLOWS project*

B- Cosmography of Laniakea

Rigault priv. comm.

Approach *The HOSTFLOWS project*

B- Cosmography of Laniakea

Rigault priv. comm.

(Current) Approach The HOSTFLOWS project

B- Cosmography of Laniakea

NIR SNIa survey gr light-curves from ZTF + single JH epoch NOT-2.5m NOTCam CAHA-3.5m Omega2000 NTT-3.5m SOFI CMO-2.5m NIRCam VLT-8.1m HAWKI

~400 SNe already observed (goal 1000)

Approach *The HOSTFLOWS project*

B- Cosmography of Laniakea

Fit to all bands

Tomás Müller et al. in prep.

Fit to all bands

Tomás Müller et al. in prep.

Fit to all bands

Tomás Müller et al. in prep.

Fit to gr + 1 JH epoch

Fit to all bands

Tomás Müller et al. in prep.

Fit to gr + 1 JH epoch

FLOWS simulation with CSP

Pipeline and webpage

Name 🕯	•	ZTF \$	RA (hour s)	Dec 💠	Redshift\$	Discovery date	Quicklook \$	Actions \$
<u>2021acvk</u>	, 4	<u>ZTF21acjxsrf</u>	09:12:41.0	+16:07:59.1	0.089	2021-10- 22 11:55	$- \underbrace{20^{\circ}}_{g} N = - \underbrace{320}_{g} \frac{1100}{920} + \underbrace{300}_{g} \frac{1100}{9$	PromoteReject
<u>2021abzi</u>		<u>ZTF2lacipmgw</u>	08:28:51.7	+12:32:18.2	0.067155	2021-10- 22 11:28	$= \underbrace{20^{\circ}}_{S} \underbrace{N}_{H_{2}} \\ = \underbrace{10^{\circ}}_{S} \underbrace{10^{\circ}}_{H_{2}} \underbrace{10^{\circ}}_{H_{2}}$	PromoteReject
<u>2021acmy</u>	, 4	<u>ZTF21acjotbf</u>	10:20:49.6	+51:43:34.9	0.07391	2021-10- 22 11:21	$- 20^{\circ} N = - 3021 \text{ array}$ $- 20^{\circ} N = - 3021 \text{ array}$ $- 10^{\circ} 10^{$	PromoteReject
<u>2021accl</u>	, 4	ZTF21aciouwz	08:07:07.2	-00:05:42.5	0.055	2021-10- 22 10:40	- 20" N - Hand Hand Hand Hand Hand Hand Hand Hand	PromoteReject
<u>2021abzu</u>	4	<u>ZTF21acidhhs</u>	09:59:44.0	+49:19:41.8	0.076916	2021-10- 22 10:27	$= 20^{\circ} N = -\frac{366}{90}$	PromoteReject

More than 400 objects already available

Target Catalog: 2021tmf

|--|

J2000

Target

Target ID	1261
Discovery magnitude	19.94
Right Ascension	346.11909402 23:04:28.583
Declination	27.35359514 +27:21:12.943
Redshift	0.02566
Discovery	2021-07-16 09:40:12
Inserted	2021-07-23 22:04:28
Host galaxy	
ZTF ID	ZTF21abmjivk

📝 Edit target

Processing

Catalog downloaded?

Reference stars

	ID \$	Distance (")	Gaia mag	Gaia B p	Gaia R p	B ≑	V \$	u \$	g 🌲	r \$	i \$	z \$	Н 🖨
	140823461221866436	10.9	14.985	15.306	14.478	15.632	14.964	16.628	15.331	14.97	14.83	14.79	13.597
	140833461140798125	42.9	18.526	18.895	17.846			19.3119	18.654	18.191	17.948	17.962	16.228
	140833461057975915	53.9	18.709	19.423	17.758			22.5877	19.769	18.699	18.175	17.878	15.822
	140843461282490950	56.4	16.81	17.393	16.059	18.531	17.275	19.9475	17.548	16.784	16.441	16.271	14.618
	140843461256186260	67.5	18.379	19.464	17.315			22.9173	19.892	18.605	17.733	17.309	15.342
1	140803461112563655	68.4	17.707	18.261	16.994			20.4665	18.37	17.656	17.368	17.231	15.696

 \checkmark

Pipeline and webpage

Name 🕯	•	ZTF \$	RA (hour s)	Dec 💠	Redshift\$	Discovery date	Quicklook \$	Actions \$
<u>2021acvk</u>	, 4	<u>ZTF21acjxsrf</u>	09:12:41.0	+16:07:59.1	0.089	2021-10- 22 11:55	$- \underbrace{20^{\circ}}_{g} N = - \underbrace{320}_{g} \frac{1100}{920} + \underbrace{300}_{g} \frac{1100}{9$	PromoteReject
<u>2021abzi</u>		<u>ZTF2lacipmgw</u>	08:28:51.7	+12:32:18.2	0.067155	2021-10- 22 11:28	$= \underbrace{20^{\circ}}_{S} \underbrace{N}_{H_{2}} \\ = \underbrace{10^{\circ}}_{S} \underbrace{10^{\circ}}_{H_{2}} \underbrace{10^{\circ}}_{H_{2}}$	PromoteReject
<u>2021acmy</u>	, 4	<u>ZTF21acjotbf</u>	10:20:49.6	+51:43:34.9	0.07391	2021-10- 22 11:21	$- 20^{\circ} N = - 3021 \text{ array}$ $- 20^{\circ} N = - 3021 \text{ array}$ $- 10^{\circ} 10^{$	PromoteReject
<u>2021accl</u>	, 4	ZTF21aciouwz	08:07:07.2	-00:05:42.5	0.055	2021-10- 22 10:40	- 20" N - Hand Hand Hand Hand Hand Hand Hand Hand	PromoteReject
<u>2021abzu</u>	4	<u>ZTF21acidhhs</u>	09:59:44.0	+49:19:41.8	0.076916	2021-10- 22 10:27	$= 20^{\circ} N = -\frac{366}{90}$	PromoteReject

More than 400 objects already available

Catalog downloaded?

Reference stars

ID \$	Distance (")	Gaia ma g	Gaia B p	Gaia R p	B \$	V \$	u \$	g 💠	r 🗢	i \$	z 🗢	Н 🜩
140823461221866436	10.9	14.985	15.306	14.478	15.632	14.964	16.628	15.331	14.97	14.83	14.79	13.597
140833461140798125	42.9	18.526	18.895	17.846			19.3119	18.654	18.191	17.948	17.962	16.228
140833461057975915	53.9	18.709	19.423	17.758			22.5877	19.769	18.699	18.175	17.878	15.822
140843461282490950	56.4	16.81	17.393	16.059	18.531	17.275	19.9475	17.548	16.784	16.441	16.271	14.618
140843461256186260	67.5	18.379	19.464	17.315			22.9173	19.892	18.605	17.733	17.309	15.342
140803461112563655	68.4	17.707	18.261	16.994			20.4665	18.37	17.656	17.368	17.231	15.696
140803461311553442	75.0	18.264	18.683	17.664			20.5347	18.743	18.22	18.031	17.956	16.081
140813460990301697	75.4	15.635	15.975	15.118	16.501	15.786	17.2664	16.013	15.621	15.473	15.418	14.154
140823461441634955	80.2	18.579	19.158	17.829			21.0792	19.286	18.545	18.202	18.037	16.305
140833461442670061	82.0	15.453	15.731	15.016	16.164	15.617	16.9519	15.73	15.443	15.374	15.359	14.272

Download lightcurve

Download ZTF lightcurve

ID	\$	File name \$	Site \$	Obs. time 🔹	Filter 🗧	¢	Image	\$ Sub.	\$]	Phot
100	699	SN2021tmf_J_20210726	Calar Alto, 3.5m	59422.08484	J		🔲 👱		•	<u> </u>
107	700	SN2021tmf_H_20210726	Calar Alto, 3.5m	59422.10695	Н		🔳 👱		•	<u> </u>

Pipeline and webpage

Name 💠	ZTF	RA (hours)	Dec \$	Redshift \$	Discovery date	Quicklook +	Actions 🜩
<u>2021acvk</u>	ZTF21acjxsrf	09:12:41.0	+16:07:59.1	0.089	2021-10- 22 11:55	- 20" N	PromoteReject
<u>2021abzi</u>	ZTF21acipmgw	08:28:51.7	+12:32:18.2	0.067155	2021-10- 22 11:28	$= \underbrace{20^{\circ}}_{S} N = \underbrace{-}_{S} $	PromoteReject
<u>2021acmy</u>	<u>ZTF21acjotbf</u>	10:20:49.6	+51:43:34.9	0.07391	2021-10- 22 11:21	$= 20^{\circ} \text{ N} = -\frac{100}{900} + \frac{100}{900} + \frac{100}{900$	PromoteReject
<u>2021accl</u>	ZTF21aciouwz	08:07:07.2	-00:05:42.5	0.055	2021-10- 22 10:40	- 20" N	PromoteReject
<u>2021abzu</u>	ZTF21acidhhs	09:59:44.0	+49:19:41.8	0.076916	2021-10- 22 10:27	$= 20^{\circ} N = -\frac{366}{99}$	PromoteReject

More than 400 objects already available

Catalog downloaded?

~

FoV: 6.04'

Reference stars

ID \$	Distance ('*)	Gaia ma g	Gaia B p	Gaia R p	B ≑	V \$	u \$	g 🗢	r 🗢	i 🜲	z \$	Н 🖨
140823461221866436	10.9	14.985	15.306	14.478	15.632	14.964	16.628	15.331	14.97	14.83	14.79	13.597
140833461140798125	42.9	18.526	18.895	17.846			19.3119	18.654	18.191	17.948	17.962	16.228
140833461057975915	53.9	18.709	19.423	17.758			22.5877	19.769	18.699	18.175	17.878	15.822
140843461282490950	56.4	16.81	17.393	16.059	18.531	17.275	19.9475	17.548	16.784	16.441	16.271	14.618
140843461256186260	67.5	18.379	19.464	17.315			22.9173	19.892	18.605	17.733	17.309	15.342
140803461112563655	68.4	17.707	18.261	16.994			20.4665	18.37	17.656	17.368	17.231	15.696
140803461311553442	75.0	18.264	18.683	17.664			20.5347	18.743	18.22	18.031	17.956	16.081
140813460990301697	75.4	15.635	15.975	15.118	16.501	15.786	17.2664	16.013	15.621	15.473	15.418	14.154
140823461441634955	80.2	18.579	19.158	17.829			21.0792	19.286	18.545	18.202	18.037	16.305
1400004014400700001	00.0	17 470	17 701	17 010	10104	17 017	10 0710	17 70	17 4 40	17 074	17 070	14 070

ositions_g2d

Photometry: #10699

Plots

			Download lightcurve			Download Z	/e					
II) \$	File name	\$	Site	¢	Obs. time	\$	Filter	\$	Image	\$ Sub.	\$ Phot
	10699	SN2021tmf_J_20210726		Calar Alto, 3.5m		59422.08	484	J		🔲 🖢		<u> </u>
Г	10700	SN2021tmf_H_20210726		Calar Alto, 3.5m		59422.10	695	Н		🔲 🖢		<u> </u>

Summary and conclusions

- Tension in H0 could be due to either new physics or systematics (Early/Late)
- SNIa and Cepheid calibrations can be improved with current data (IFS/pol) and current (and new) methods
- CRISP studied the extinction towards SNe Ia from different approaches
- HOSTFLOWS aims to continue this effort, extend to Cepheids, and focus on determining H0 with improved standardisation
- In addition, a new survey of SNIa in the NIR will map the DM. In the local supercluster and provide an independent estimation of H0 and σ_8

Outreach

Joan Garriga Musician joangarriga.cat

Thanks for your attention