Physics Lancaster

Atmospheric neutrino oscillation physics with Liquid Argon detectors

Dr. Andy Blake Lancaster University

IOP Workshop: Opportunities with Atmospheric Neutrinos November 10th, 2021

Atmospheric Neutrinos

- Atmospheric neutrinos offer a unique probe of neutrino oscillations.
- All flavours of neutrinos and antineutrinos, generating multiple oscillation modes.
- > Wideband coverage of neutrino energies and baselines, enabling tests of oscillations over multiple wavelengths.
- > Upward-going multi-GeV neutrinos are sensitive to matter effects via MSW resonance.
- Complementary with beam neutrinos.
- Stand-alone and powerful probe of oscillation phenomena.
- Atmospheric neutrino data can help to resolve ambiguities that arise in beam-only analyses.

Atmospheric neutrino production

Oscillation Physics

- Atmospheric neutrino oscillations exhibit rich structure in a range of channels!
 - > Strong enhancement of ν_e appearance due to matter effects.
 - > Beautiful ν_{μ} disappearance fringes!
 - > Significant levels of ν_{τ} appearance

Liquid Argon Detectors

- The use of LAr-TPC technology offers many advantages in the study of atmospheric neutrino oscillations.
 - Excellent spatial and calorimetric resolution will enable precise measurements of energy and angle.
 - Excellent particle ID capabilities
 - Moderate discrimination between neutrinos and antineutrinos.
- The DUNE experiment promises to deliver an exciting programme of atmospheric neutrino physics!
 - Large fiducial mass (40kton) will provide high event rates.
 - Large rock overburden (4850 feet) will shield against cosmic-ray backgrounds.

Physics Studies

- To investigate the oscillation sensitivity of a large LAr-TPC experiment like DUNE, I developed a fast Monte Carlo simulation:
 - \succ GENIE event generator.
 - > Parameterised reconstruction (will be superseded by full reconstruction!)
 - \succ Oscillation fitting framework based on MINOS long-baseline experiment.

• Focus on standard oscillation physics with atmospheric neutrinos:

- > Combined analysis of ν_{μ} disappearance and ν_{e} appearance.
- > Sensitivities to mass hierarchy, CP violation, θ_{23} octant.

Fast Simulation (1)

Fast Monte Carlo simulation:

> GENIE event generator:

Use GENIE to simulate atmospheric neutrino interactions on Argon.

- Bartol 3D flux (Soudan mine).
- Neglect cosmic-ray backgrounds and neutrino interactions in rock.

> Pseudo-reconstruction:

Simulate LAr-TPC detector performance by smearing final-state four-vectors.

- Parameterised thresholds, resolutions, particle ID, etc
- Separation of fully/partially contained events using realistic geometry.

> Multivariate fitting framework:

Fit oscillation parameters plus a suite of systematics.

Fast Simulation (2)

- The pseudo-reconstruction categorises simulated events according to their final-state particles:
 - > Flavour tag: ν_{μ} -like or ν_{e} -like, based on final-state lepton.
 - **Containment**: fully contained (FC) or partially contained (PC).
 - Kinematics: Each event is assigned a leptonic and hadronic four momentum, based on a smearing of the Monte Carlo truth.
- The detector performance is described by a suite of parameters:

Angular Resolution	Electron	1°	
	Muon	1°	
	Hadronic system	10°	
Energy Resolution	Stopping muon	3%	
	Exiting muon	15%	
	Electron	1%/√E + 1%	
	Hadronic system	30%/√E	
Signal Acceptance	Electrons	90%	Sources:
	Muons	100%	➤ ICARUS, JINST 6, 07011 (2011)
Background Rejection	e-like (πº, γ)	95%	> LBNE, arXiv:1307.7335 (2013)
	μ-like (π⁺, π⁻)	99%	GENIE and GEANT4

Event Distributions (1)

• Fast simulation produces a realistic zenith angle distribution:

Event Distributions (2)

• Sensitivity to mass hierarchy from both ν_{μ} -like and ν_{e} -like channels:

Event Distributions (3)

• We can perform an L/E analysis by selecting "high-resolution" events.

> High-resolution sample is obtained by cutting out low-energy events around the horizon (can imagine more sophisticated methods).

The first, second and third oscillation maxima can be resolved in the high-resolution L/E distributions!

> Unique capability for atmospheric neutrinos in LAr-TPC detectors.

v/anti-v Enhancement

- The fast simulation provides an environment for developing tools to statistically separate neutrinos and antineutrinos.
 - Sensitivity to mass hierarchy can be enhanced if atmospheric neutrinos and antineutrinos can be separated.

• Currently simulate three methods of v/anti-v enhancement:

> Tagging final-state protons:

- Assume perfect efficiency for proton reconstruction if KE>50 MeV.
- Proton-tagging yields a 10% enhancement in the neutrino fraction.

> Tagging Michel electrons:

- Exploit large asymmetry of μ^- and μ^+ decay vs capture in Argon.
- Electron-tagging yields a 25% enhancement in the antineutrino fraction.
- Non-tagged sample is entirely composed of neutrinos.

Perfect charge separation:

- For comparison, also simulate perfect separation of μ^{-} and μ^{+} events.

Oscillation Sensitivities

- To calculate oscillation sensitivities, we apply a joint log-likelihood fit to the ν_{μ} -like or ν_{e} -like event samples.
 - > Each sample is binned by reconstructed energy and angle.
- The following parameters are allowed to float in the oscillation fit:
 - ➤ Oscillations:
 - 3 parameters included in the fit: θ_{23} , δ_{CP} , sign(Δm^2).
 - ➤ Systematics:
 - 18 parameters included in the fit covering normalisation, flux ratios, neutral-current backgrounds, spectral indices, and energy scales.
 - Implemented as nuisance parameters with penalty terms.
- Determine the sensitivity to mass hierarchy, θ_{23} octant and CP violation using $\sigma = \sqrt{\Delta \chi^2}$ as a simple estimate of the significance.

Mass Hierarchy

• Mass hierarchy capability looks promising with atmospheric neutrinos!

- > Require ~300 kt-yr exposure to achieve " $3\sigma''$ determination of hierarchy.
- > Sensitivity to hierarchy is almost independent of the value of the δ_{CP} phase.
- > Proton and electron tags yield a moderate improvement in sensitivity.

θ₂₃ Octant and CP Violation

• Moderate sensitivity to θ_{23} octant and δ_{CP} (although weaker than beam):

(However, atmospheric data can help to break degeneracies in oscillation analyses)

Combined Beam and Atmospherics

- For context, we can compare the atmospheric neutrino sensitivities to representative beam sensitivities calculated using the same method.
 - Beam dominates average sensitivity, but atmospherics are complementary, and significantly contribute to the mass hierarchy sensitivity.
 - In DUNE, atmospheric neutrinos will also provide a crucial data set for detector understanding.

Summary

- Atmospheric neutrinos provide a rich source of oscillation physics!
- The use of Liquid Argon TPC detectors offers many benefits in the study of atmospheric neutrino oscillations.

> Detectors have exquisite spatial and calorimetric resolution.

- DUNE will collect copious atmospheric data , enabling precision measurements of neutrino oscillations.
- Physics studies based on a fast Monte Carlo simulation indicate that DUNE has excellent sensitivity to sub-dominant oscillation phenomena, particularly the mass hierarchy.
 - Socillation measurements with atmospheric neutrinos are complementary to the accelerator programme.
 - > Atmospherics will also help to resolve ambiguities in beam-only analyses.
- Fast simulation can be used to study optimisations of the analysis, such as v/anti-v enhancement.

BACKUP

GENIE Simulation

- Use Bartol 3D flux calculation at Soudan mine (solar maximum).
 - Published PRD 70, 023006, 2004.
- Normalise sample by integrating flux times cross-section.

Interaction rates per 100 kt-yrs:

	СС	NC	Total
\mathbf{v}_{μ}	10069	4240	14309
anti- v_{μ}	2701	1895	4596
ν _e	5754	2098	7852
anti-v _e	1230	782	2012
Total	19754	9015	28769

solar max: 288 interactions / kt-yr
[solar min: 328 interactions / kt-yr]

L/E Analysis

- Can perform L/E analysis by selecting "high resolution" atmospheric neutrinos.
- Need to select high resolution events, even in Liquid Argon experiment.
- Select shaded area of E_ν-cosθ_z (right):
- Can imagine more sophisticated ways of selecting events (e.g. arXiv:1208.2899).

 Can clearly resolve multiple oscillation wavelengths in L/E distributions!

(Unique capability for atmospheric neutrinos in LAr-TPC detectors).

Oscillation Analysis

- Oscillation sensitivities: apply joint fit to e-like and μ-like event samples (μ-like events separated into FC and PC).
 - Samples are binned by reconstructed energy and angle.
 - By default, atmospheric events are also separated according to proton and electron tags (provides some v/anti-v enhancement).

Oscillation analysis includes following parameters:

- Systematics: 14 parameters, covering overall normalisation, flux, NC background and energy scales [see overleaf].
- Oscillations: Fix θ_{12} , Δm_{21}^2 , and $\Delta m_{21}^2 = 1/2 (\Delta m_{32}^2 + \Delta m_{31}^2)$. Fit θ_{23} , θ_{13} , δ_{CP} , sign(Δm_{2}^2) [2% constraint on θ_{13}].
- Use the following representative input oscillations:

 $\Delta m_{21}^2 = 7.54 \times 10^{-5} eV^2$, $\sin^2 \theta_{12} = 0.307$, $\sin^2 \theta_{13} = 0.0242$.

 $\sin^2\theta_{23} = 0.40, \ \Delta m^2 = 1/2(\Delta m^2_{32} + \Delta m^2_{31}) = \pm 2.40 \times 10^{-3} eV^2$

• Calculate sensitivity to hierarchy, octant and CP violation, using $\sigma = \sqrt{\Delta \chi^2}$ as measure of sensitivity.

Systematics

	Atmospheric	Beam (Assume ND)	
Normalisations	Overall (15%)	μ-like (1%) e-like (1%)	
NC Backgrounds	(No ND decomposition for atmos v) e-like (10%)	μ-like (10%) e-like (5%)	
Spectrum Ratios	$ \begin{array}{c} up/down (2\%) \\ v_e/v_\mu (2\%) \end{array} \begin{array}{c} Flux rates \\ are estended \\ anti-v_\mu/v_\mu & anti-v_e/v_e (5\%) \end{array} \end{array} $	tios cancel strongly, so these imated detector uncertainties	
Spectrum Shape	Apply separate functions for ν_{μ} , ν_{e} , anti- ν_{μ} , anti- ν_{e}	$f(E < E_0) = 1 + \alpha(E - E_0)/E_0$ $f(E > E_0) = 1 + \alpha \log(E/E_0)$ where $\sigma_{\alpha} = 5\%$	
Energy Scales (Correlated)	Muons (stopping 1%, exiting 5%) Electrons (1%) Hadronic system (5%)		

Tau neutrinos

• Expect ~1 ν_{τ} interaction per kton-year from tau neutrino appearance.

• Events have complex topologies! Need to develop complete chain of simulation and reconstruction.

