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* Bayesian inference

* Markov Chain Monte Carlo methods
*The MaCh3 analysis framework

* Current and future plans for MaCh3




Bayesian Inference T2k

* MaCh3 uses a Bayesian interpretation of statistics

* From a Bayesian perspective, there is no fundamental difference between the data (D) and model
parameters (0)

* To make inferences about model parameters, we must find a model that describes both the data and
model parameters, this is known as the joint probability distribution:

P(D,6) = P(D|6)P(6)

Likelihood of measuring data Prior (previous knowledge
Joint Probability Distribution — assuming set of parameters &3 about a parameter)

Aim of a Bayesian analysis: what is the probability for each
parameter to have a certain value given our data, i.e.
P(6|D), the posterior distribution

Calculate posterior from joint
probability distribution using Bayes’
Hard to

R — P (D | Q)P (8) evaluate!
) P (6|D) = TH IR —
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 MaCh3 uses a Markov Chain Monte Carlo (MCMC)

method to calculate the posterior

* Chain carries out semi-random walk through
parameter space, builds up discrete points whose

density is proportional to the posterior

* For a chain to always have a stationary distribution,

a chain must be:

* Irreducible — chain has non-zero probability to reach all

other potential states

* Recurrent — once stationary distribution reached, all
subsequent steps must be samples from the stationary

distribution

* Aperiodic — chain must not be periodic (e.g. can’t

alternate back and forth between states)
* Therefore, we need a chain that:

1. Satisfies the ‘regularity’ conditions listed above, and

2. Has the posterior P(0|D) as its stationary
distribution

e Can ensure these conditions are met using the

Metropolis-Hastings algorithm
10/11/2021
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Markov Chain Monte Carlo
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lllustration of MCMC method. Source: S.-S. Jin, H. Ju, and H.-J.
Jung, Structure and Infrastructure Engineering, vol. 15, no. 11, pp.

1548-1565, 2019.



Metropolis-Hastings Algorithm 2K\

Propose a set of parameters 6;

Evaluate acceptance probability:

function dependent only upon
previous step 6;_4

from a symmetric proposal P(6;|D)
a = min( l )

1, ——
P(6;_41|D)

If r < a, accept the proposed Generate random number 7 from
step, otherwise, reject the current uniform distribution between 0
step and propose a new step and 1

e As algorithm progresses, it builds up distribution of discrete points, with more
points in high probability regions than low probability regions

* Highly probably regions are always accepted, other regions are sometimes
accepted (semi-random aspect due to random number generation)

* The MH algorithm ensures our chain will always reach the stationary distribution
(proportional to the posterior), but ideally it will converge as quickly as possible

10/11/2021 Thomas Holvey 5



The Art of MCMC JT2K\

Step size: 0.5

* MCMC is a powerful method, but with great .

power comes great responsibility... )

* The efficiency and speed of your chain e

depends most on your choice of: b | Stepsize: 0.1
* Proposal function: gives us the area of parameter e
space our chain will move to next i ol WM
* Step size: how large the jumps are between o T .
adjacent steps § M e & W

* Step sizes should be tuned to achieve optimal -

performance/speed whilst also maintaining a
reasonable acceptance rate
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Figure from: W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,

iteration t
“Markov Chain Monte Carlo in Practice” (Chapman & Hall/CRC
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T2K

* Markov Chains don’t usually start in a
region of high probability, you need to
let them adequately explore the SK Parameter
parameter space :

* This usually takes a significant
number of steps to achieve, known as B
the ‘burn-in’ phase --

* These steps won’t contain any
information on your underlying
stationary distribution, so these
should be discarded before any
analysis is done 0.85

* From the ‘re Ularity’ COnditionS, the B - R T 7 R R T
chain must ‘forget’ its starting point, o
therefore can safely discount the
burn-in phase of the chain

Burn-in

a

Chain sampling from
stationary distribution

Parameter Value

Therefore steps here contain
information about our
model parameters




" MaCh3 T2R

N3 uses a MCMC method to sample the posterior distribution, from this
usions can be drawn about the oscillation parameters

n3 performs a joint-fit of both near- and far-detector parameters:

* Qutput of MaCh3 fitis a
~750 dimensional

Super-K

Systematics SRS PEIE
posterior — far too large
. o o C _ t'
to visualise or interpret L
* Posterior is marginalised Parameters
(integrated) onto fewer ND Systematics

dimensions and filled

into a histogram Beam/Flux

Model
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Advantages of MaCh3 I=K

* MaCh3 has full access to event-by-event kinematic information, which gives
the fitter several advantages:
* Allows functional re-weights to be applied to any event variable

* Enables shifts to be applied to kinematic variables (e.g. binding energy corrections
applied to lepton momentum)

e Can construct any variable combinations that are needed

* MaCh3 has full implementation of the near-detector, allowing a
simultaneous of ND+FD data and systematics — avoids assumptions about
ND constraints

e Can apply different priors by simply re-weighting the posterior distribution;
equivalent to re-running a new MCMC with different priors

* For T2K, it is useful to re-weight the posterior using the PDG world-average for the
8,3 mixing angle from reactor experiments, which have superior sensitivity



Configurable uncertainty model 2%

 MaCh3 has been developed to allow uncertainty models to be easily configurable by
users

* Can specify any response function or normalisation systematic and its correlations using
a simple xml config file

* For normalization parameters we have extended this to allow user to choose which variables (e.g.
interaction modes, kinematic regions, etc.) are affected without touching compiled code

<!-- Single pion parameters —--—>
<!-—— Priors and correaltion updated in 2021 https://www.t2k.org/docs/technotes/414 ——>
<!-— See chapter 5.2 New priors on Rein-Sehgal parameters -->
<parameter name="CA5" nom="1.01" prior="1.06" lb="0" ub="9999" error="0.1" renorm="0" type="spline" splineind="28" detid="985" sk_splin
<correlation par="MARES">-0.11l</correlation>
<correlation par="IS0_BKG">-0.03</correlation>
<sk_mode>1 5 6 14</sk_mode>
</parameter>
<parameter name="MARES" nom="0.95" prior="0.91" 1b="0" ub="9999" error="0.1" renorm="0" type="spline" splineind="29" detid="985" sk_spl
<correlation par="CA5">-0.11l</correlation>
<sk_mode>1 5 6 1l4</sk_mode>
</parameter>
<parameter name="IS0_BKG_LowPPi" nom="1.3" prior="1.3" 1b="0" ub="9999" error="1.30" renorm="0" type="spline" splineind="30" detid="984
<sk_mode>1 5 6 14</sk_mode>
</parameter>
<parameter name="ISO0 BKG" nom="1.3" prior="1.21" 1b="0" ub="9999" error="0.27" renorm="0" type="spline" splineind="31" detid="985" sk_s
<correlation par="CA5">-0.03</correlation>
<sk_mode>1 5 6 14</sk_mode>
</parameter>
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* MaCh3 is being used extensively in the T2K Oscillation
Analysis and is also being used in several other areas
within T2K:

 MaCh3 has been modified to allow for joint-fit between T2K
beam data and SK atmospheric data (see Dan Barrow’s talk)

* MaCh3 is also being used in T2K-NOVA joint-fit effort

* Work is also underway to adapt MaCh3 for use in next-
generation neutrino experiments, DUNE and Hyper-K

* Hyper-K: MCMC step-size tuning and validations with other
fitters

 DUNE: Currently reproducing DUNE Far Detector Technical
Design Report analysis — also restructuring and redesigning
MaCh3 to more easily support multiple experiments
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Current/Future Plans for I\/IaChB
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Liban Warsame

Asher Kaboth Tom Holvey

Abraham Teklu
Clarence Wret

Kamil Skwarczynski

Kevin Wood

Dan Barrow

~20 people actively working on
MaCh3 across many institutions

Balint Radics

10/11/2021 Thomas Holvey 12



Summary Tk

* MaCh3 uses a Bayesian Markov Chain Monte Carlo method to draw
conclusions about oscillation parameters

* It has full access to event-by-event kinematic information, which allows re-
weighting and shifts to be easily applied

* MaCh3 fits both ND+FD data/systematics, therefore avoiding assumptions
about ND constraints

* MaCh3 is widely used in many LBL neutrino experiments, both current and
next-generation

* Plenty of scope to get involved in MaCh3, contact Patrick Dunne
(p.dunnel2@imperial.ac.uk) to find out more!
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Marginalisation T2K

 MaCh3 involves fitting a ~750 parameter distribution, but only interested in 4
oscillation parameters

* Need to ensure the uncertainty introduced due to other model parameters are
appropriately taken into account

* To do this, we marginalise (integrate) over all other ‘nuisance’ parameters (i.e.
parameters that aren’t of specific interest to an oscillation analysis)

* Doing this yields the marginal posterior:

| P(D|6p01, 01)P(Opoir 0n)d0y
[P(D|6)P(6)d6

P(Hpoi‘D) =

* In T2K MaCh3, the posterior is often marginalised onto 1 or 2 dimensions, and
filled into a histogram



MaCh3 Appearance Analysis T2k

T2K Run 1-10 Preliminary T2K Run 1-10 Preliminary
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35% of 6-p values excluded at 30
CP conserving values (0, ) excluded at 90% CL
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