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Hyper-Kamiokande N
Hypér-K

* Water Cherekov detector, the successor of Super-Kamiokande

* Located in the mountain in mid-west Japan, and it’s 68 m in diameter
and 71 m in height (3/4 of the Big Ben)

» 8 times the fiducial volume of Super-K
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Hyper-Kamiokande

* It plans to have 20,000 20-inch
PMTs and ~2,000 mPMTs (to
improve granularity) in the
inner detector (ID)
and ~6,000 3-inch PMTs in the s el e
out.er detector (OD) veto mPMT 1 9 y 3,, PMTs e o
region e

e Simulation on the right has
~19,000 20-inch PMTs and
~5,000 mPMTs
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FiITQun, a Traditional Reconstruction Tool

* Likelihood based, developed by Super-K and migrated to Hyper-K

* Good at energy, direction, vertex location reconstruction, also
performs good e- and piO separation

* Not so good at e- and gamma separation as the signals from the two
are quite similar

* Very slow, ¥ min per event
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PointNet, a Machine Learning Technique

* Unlike traditional Convolutional Neural Network (CNN), which
unwraps a 3D data into a 2D image (e.g. ResNet), PointNet is a 3D
classification and segmentation tool that accept ‘point cloud’

* Advantage:
- retaining location, timing and charge relation between hit PMTs;
- can apply to any detector size

and geometry I Poin;Net
- Quick to use after training 7 mg By
/? oy table? ’ i
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IWCD explored the efficiency of performing e/y discrimination with
fiTQun, ResNet and PointNet

Figure of merit: AUC, [0, 1], the larger the better
ResNet better than fiTQun

PointNet better than ResNet when using both charge and timing
information (default TTS curve in bottom right)

PointNet for
IWCD PID

e vs ¥ Rejection i e vs y Rejection |
- ResNet, charge only, AUC=0.668
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Reconstructing Events

* Currently looking at e- and

mu- from neutrino CC X ;
interactions (simulated s
eventS) ?:' ‘~ ........

e Performing classification ? ot kil
using PointNet and compare ? ] e s e
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Input Data Processing Procedure for Pothetﬁ@K
yper-

Simulation
Output Data

npz files* 1 hdf5 file PointNet

Speed of processing:

* For 6M events, takes ~6 days from simulation output to PointNet
results, ~0.01 minute per event

* FitQun processes straight from simulation output, few minutes per
event
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Analysis of the ML and FiTQun Results

* Currently the classification
using FiTQun negative log
likelihood value performs
better than PointNet

 Not ideal but the difference is
small

* Could be due to a simulation
bug, currently processing new
data without bug
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106 - { —— PointNet, w/o Transformations, 20 Epoch, AUC=0.977
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Next Step

* Compare the performance of e-/gamma separation using PointNet
and FiTQun

* Incorporating particle energy/direction and vertex location
reconstruction into the PointNet analysis

e Ultimately move on to reconstructing high energy (TeV scale) events
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WatChMal = %

WatChMal.: cross-collaboration group formed to explore ML for WC

Common challenges for ML with WC detectors
e Cylindrical geometry
e High-resolution, sparse data

Many physics goals

e Maximise precision of new detectors

e Reconstruct complex event topologies

e Discriminate electron and gamma rings

e Improving detector calibration & systematics
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PointNet

PointNet is designed to work on ‘point clouds’ rather
than images

® Each hit PMT is a ‘point’ with time, charge &
position, not fixed to grid

O CNN learns translation-invariant functions on
image

O PointNet learns symmetric functions on point
clouds

m  Symmetric: ordering of points cannot affect
outcome

® (Convolution-like operations act on each point’'s
charge, time and position

® [nformation flows between points by learning
global transformations applied to all points

® Can apply to any detector geometry

N. Prouse, TRIUMF CAP Congress, 7th June, 2021
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* The whole dataset is divided
into three: = s e
50% are training sets;
10% are validation sets;
40% are test sets.
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*1 ROOT file to 1 npz file
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