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Physical Motivation

the Feynman path integral is both conceptually
and computationally powerful ... but

... some important physics computations are still challenging

finite density: e.g. the “sign problem”
non-equilibrium physics at strong-coupling
real time evolution

quantum systems in extreme background fields
(gauge and gravitational)

standard computational methods from path integrals

perturbation theory

+ non-perturbative numerical methods: Monte Carlo
non-perturbative semi-classical methods: “instantons”
asymptotics
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standard computational methods from path integrals

perturbation theory

non-perturbative numerical methods: Monte Carlo
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“resurgence’’: seeks to unify these approaches

technical problem: how to actually compute a quantum path integral?



QFT at Extreme Intensities

Current experimental
proposals: laser-laser; laser-
lepton; lepton-lepton;
highly-charged 1ons; ...
Important theoretical puzzles
remain

Astro-physical applications
Semiclassical computations
Non-equilibrium physics
Ultra-fast dynamics

FACET II (SLAC):
Snowmass I etter of Intent

Reviews: D1 Piazza et al, 2012;
US National Academies, 2018

Strickland
& Mourou
Nobel Prize 2018
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Physical motivation: Non-perturbative intense-field QFT

Understanding the Fully Non-Perturbative Strong-Field Regime of QED.

(Letter of Intent to Snowmass Theory Frontier)

Philip H. Bucksbaum, Gerald V. Dunne? Frederico Fiuza, Sebastian Meurent Michael E. Peskin, David A. Reis,
Greger Torgrimsson, Glen White, and Vitaly Yakimenko

June 25, 2020

Abstract: Although perturbative QED with small background fields is well-understood and well-tested, there
is much less understanding of QED in the regime of strong fields. At the Schwinger critical field, E. = m2¢3/
eh =1018 V/m, the vacuum becomes unstable to pair production. For stronger fields, such that a(E/E)2/3 > 1,
QED perturbation theory breaks down. These regimes are relevant to environments found in high-energy
astrophysics and to physics in the collisions of high-energy electron and heavy ion beams. We plan to
investigate problems in beam simulation and basic QED theory related to QED at strong fields, to analyze
experiments that can test QED in this regime, and to explore applications to astrophysics and particle physics.



The Feynman Path Integral

<xt‘6—iﬁlt/h‘x0> _

QM: / Dzx(t) exp ;LS[fL‘(t)]

QFT- / DA(z") exp | S [A(z")

stationary phase approximation: classical physics

bridge from classical to quantum field theory

quantum perturbation theory: fluctuations about trivial saddle point
other saddle points: non-perturbative physics

resurgence: saddle points are related by analytic continuation, so
perturbative and non-perturbative physics are unified




Resurgence in Classical Optics: the original “sign problem”

Airy, Stokes and spurious/supernumerary rainbows

Airy 1838: “On the intensity of Stokes 1850: “On the numerical
light in the neighbourhood of calculation of a class of definite
a caustic” integrals and infinite series”

“Stokes, by mathematical supersubtlety
transformed Airy’s integral into a form by
which the light at any point of any of
those thirty bands could be calculated
with but little effort ...”

Lord Kelvin (Stokes obituary, 1903)

W. Miller 1841:
“On Spurious
Rainbows”




The Stokes Phenomenon
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Stokes 1857: “On the discontinuity of arbitrary
constants which appear in divergent developments”
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The Stokes Phenomenon Stokes 1857: “On the discontinuity of arbitrary

constants which appear in divergent developments™
1 [T 1
Ai(z) = dt '8+ t)
70

— OO

- ' ' . i, 2714 Do
non-perturbative connection Bl( x) — 20T Aj ( et 5 x) i Al( g;)
formulae connect sectors




Analytic Continuation of Path Integrals

since we need complex analysis and contour deformation to
make sense of oscillatory exponential integrals, 1t 1s natural to
explore similar methods for (infinite dimensional) path integrals

/ Da(t) exp |+ Sla(t)]| - » / Dx(t) exp

— = Slx(t),

goal: a satisfactory formulation of the functional integral

should be able to describe Stokes transitions

1dea: seek a computationally viable constructive definition
of the path integral using 1deas from resurgent trans-series




Trans-Series

e an interesting observation by Hardy:

“The only scales of infinity that are of any practical importance in
analysis are those which may be constructed by means of the
logarithmic and exponential functions.”

G. H. Hardy, Orders of Infinity, 1910

* deep result: “this 1s all we need” (J. Ecalle, 1980s)

* trans-series 1s generated by iterations of “trans-monomials”
hoe Y Inh

e conjecture: trans-series practically sufficient “for all natural problems”

* observation: this structure matches the asymptotics of all physics
computations; e€.g., perturbative and non-perturbative QFT computations



Resurgent Trans-Series Ecalle 1980s
Dingle 1960s

Stokes 1850s

resurgence: new-1sh 1dea 1n mathematics

perturbative series —— “trans-series”

physics applications: “semiclassical trans-series”

f(R) =D cph? — f(R)=> >

_k [
E Clkpl] € " R (lIl h)
p kK p I
* trans-series 1s well-defined under analytic continuation
« well understood for differential/difference/integral equations
& exponential integrals: “all natural problems”

 expansions about different saddles are related
 exponentially improved asymptotics

physics: necessarily unifies perturbative and non-perturbative physics




Resurgent Functions

“resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - 1n
a slightly different guise, as i1t were - at their singularities”

J. Ecalle, 1980

physical implication: fluctuations about different sectors are related

conjecture: this structure 1s general




Resurgence in Exponential Integrals Dingle 1960s;
B Berry & Howls 1991

“Hyperasymptotics for
steepest descent integral through saddle point “n’: Integrals with Saddles”

1™ (R :/ dzen 7 (@) = :
) Ch V/1/h

all fluctuations beyond the Gaussian approximation:
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Resurgence 1n Exponential Integrals

steepest descent integral through saddle point “n

C

all fluctuations beyond the Gaussian approximation:

(n)

mn
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Dingle 1960s;
Berry & Howls 1991
“Hyperasymptotics for
Integrals with Saddles™



Resurgence in Exponential Integrals Dingle 1960s;
B Berry & Howls 1991

“Hyperasymptotics for
steepest descent integral through saddle point “n’: Integrals with Saddles”

C

) J1/h

all fluctuations beyond the Gaussian approximation: Ny Con
T (1 T B %
Z -
straightforward complex analy81s 1mphes:
universal large orders of fluctuation coefficients: (F nm = Jm — fn)
~ D (£1) | F (Frm)’ '
() pm) o Fnm m) nm) m)
L [ i el e

fluctuations about different saddles are quantitatively related




Resurgence 1n Exponential Integrals

canonical example: Airy function integral has 2 saddle points: +/-

TF = (£1)"

T'(r+2)T(r+2) _{1 .5 385 | 85085
2r) (H)"rt |7 4874608 663552°

large orders of fluctuation coefficients:

(r — 1)! 4\ 5 1 (4\" 385 1
T ey (1 ()57 () mose=no=3

generic “large-order/low-order” resurgence relation




Resurgence 1n Exponential Integrals

canonical example: Airy function integral has 2 saddle points: +/-

1 5
rt _ sy LT (r+3) :{1’_ 5385 | 85085 }

(2m) ()7 ! 4874608 663552

large orders of fluctuation coefficients:

Gt VLI PREA SR Y EARE B
T e @) (1 () 5o+ (3) wosr=nr—s

generic “large-order/low-order” resurgence relation

remarkable fact: this resurgent large-order/low-order behavior has been
found 1n matrix models, QM, QFT, string theory, ...

the natural way to explain this is via analytic
continuation of functional integrals



[efschetz Thimbles

even the generalization to more than 1 complex dimension is interesting

Pham 1967;
Howls 1997,
Kontsevich 2020, ...

Borel plane U
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Analytic Continuation of Path Integrals: “Lefschetz Thimbles”™

Z(h) = /DA exp (% S[A]) l ZNth el Pen A DA x (Jim) X exp (Re {%S[A]D

thimble

Lefschetz thimble = “functional steepest descents contour™

* in principle, on a thimble, the path integral becomes well-defined and
computable

» complexified gradient flow:

0 0S

EA(% m) = O0A(x;T)




Analytic Continuation of Path Integrals: “Lefschetz Thimbles”™

CRISTOFORETTI et al.  (2013) Fujii et al (2013)
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FIG. 3. Comparison of the average density (n) obtained with
the worm algorithm (WA) [22] with the Aurora algorithm (AA)

- 4d relativistic Bose gas: complex scalar field theory
+  Monte Carlo on a thimble softens the sign problem
» results comparable to “worm algorithm™

1
1.4

1.6



Phase Transitions in QFT: 2d Thirring Model (Alexandru et al, 2016)
2

L= G (3 +m+ p0)° + g (90907 (9030°)

chain of interacting fermions: asymptotically free
sign problem at nonzero density
generalized thimble method: balance flow cost with sign problem cost
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| —— T/m;~0.38
0.8+

| == T/my=0.19

0.6F == T/m=013

Monte Carlo taming of >Et e T/m=0.09
the sign problem and £ 04;
demonstration of the :

“Silver Blaze” phenomenon 0.2
0.0k
0

Rev. Mod. Phys. 2022



Resurgence in QM or QFT Path Integrals?

* perturbation theory works, but it 1s generically divergent,
and 1t 1s only part of the story

* resurgence: perturbation theory encodes non-perturbative information

path integral == perturbation theory == Borel =8 trans-series
path integral = saddle expansion = asymptotics == trans-series

path integral =# Lefschetz thimbles/Monte Carlo =# trans-series

main conjecture: these should all be the same thing, and resurgence
should connect them, as well as connecting different saddles




PHYSICAL REVIEW VOLUME 85, NUMBER 14 FEBRUARY 15, 1952

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dysox
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

An argument is presented which leads tentatively to the conclusion that all the power-series expansions
currently in use in quantum electrodynamics are divergent after the renormalization of mass and charge.
The divergence in no way restricts the accuracy of practical calculations that can be made with the theory,
but raises important questions of principle concerning the nature of the physical concepts upon which the

theory is built.

F =ag+ aje® + ase* + aze® + . ..
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“The argument here presented 1s lacking in mathematical rigor and in physical
precision. It 1s intended only to be suggestive, to serve as a basis for further discussions.
... Also I am glad to have this opportunity to withdraw the erroneous argument
previously put forward to support the claim that the power series should converge.”

1952



Borel Summation: Physical Regularization of Divergent Series

Borel transform of a divergent series with ¢, ~ n!

flg)~ D eag” = Bl =D 5t

Borel sum of the divergent series:

stre) = | " dte 9 B

- the singularities of B[{](t) provide a physical encoding of the global
asymptotic behavior of f(g)

- singularities of Borel transform < » non-perturbative physics

- singularities on positive Borel t axis: exponentially small imaginary part



The Physics of Borel Summation

* computing perturbative coefficients is difficult

» generic Bender-Wu-Lipatov growth rate of perturbative coefficients:

an + b)
An

I
Cp ~ S ( , n — oo

A [ocation of leading Borel singularity: “leading instanton action”

* b : fluctuation exponent about leading instanton

a : determines the appropriate expansion variable (“Ecalle variable”)

S : Stokes constant = strength of leading 1nstanton effect

* 1n fact, resurgence implies that there 1s much more information
encoded 1n the perturbative coefficients




QM Perturbation Theory: Zeeman & Stark Effects

Zeeman : divergent, alternating, asymptotic series

Borel singularities on the negative Borel axis.

physics: Magnetic field causes (real) energy level shifts

Stark : divergent, non-alternating, asymptotic series

an ~ (2n)!

Borel singularities on the positive Borel axis.

physics: Electric field causes (real) energy level shifts

and 1onization (1maginary, exponentially small)



Instantons and Non-Perturbative Physics

AN
\ /. AN /
\\/ \/ < )F >
D ——— e e o
C——
(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems

less familiar: perturbation theory 1s non-alternating divergent

but these systems are stable 777



Instantons and Non-Perturbative Physics

AN
\ Z AN /
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(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems

less familiar: perturbation theory 1s non-alternating divergent

but these systems are stable 777

e resolution: trans-series encodes cancellations between imaginary terms

Bogomolny, Zinn-Justin, ... ~1980



VOLUME 52, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARCH 1984

1/R Expansion for H, : Analyticity, Summability, Asymptotics,
and Calculation of Exponentially Small Terms

Robert J. Damburg and Rafail Kh. Propin
Institute of Physics, Latvian Academy of Sciences, Riga, Salaspils, U.S.S.R.

and
Sandro Graffi

Dipartimento di Matematica, Universita di Bologna, 40127 Bologna, Italy
and

Vincenzo Grecchi
Dipartimento di Matematica, Universita di Modena, 41100 Modena, Italy

and

R Evans M. Harrell, 11

Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

and

Jiti Cizek and Josef Paldus
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G 1, Canada

and

Harris J. Silverstone
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 8 November 1983)

The 1/R perturbation series for Hf has a complex Borel sum whose imaginary part deter-
mines the asymptotics of the perturbed energy coefficients £™. The full asymptotic expan-
sion for the energy includes complex, exponentially small terms:

E(R) ~ ZE(N)(2R)_N+e_R/”Ea(N)QR)_N
+e R 3 dNM(2R) "N+ logR terms] tie RS M (2R) TN+

The explicit imaginary terms cancel the implicit imaginary part of the Borel sum. An exact
relation between the double-well gap series, exp(—R/n) 3 a'¥(2R)™", and the
i exp(— 2R /n) series is derived.



Resurgence in Quantum Mechanical Instanton Models

\__ 7/ N ]
N\ N4 ——
 e—

e trans-series for energy, including non-perturbative splitting:

o1 /32\Vt3 8
Ei(h,N):Epert(h,N) :\/%N! 7 eEXP _ﬁ Pinst(h,N)




Resurgence in Quantum Mechanical Instanton Models

e trans-series for energy, including non-perturbative splitting:

ho1 /32\NT2 3
Ei(h, N) — Epert(h, N) T \/ﬂ N n eEXP —% Pinst(h, N)

 fluctuations about first non-trivial saddle:

OBy, N) | [Mdh [ 0Epe(B,N) (N +3) B2\
Pmst(h,N)— 8N eXPp S/O hg 8N —h i S

perturbation theory encodes everything ... to all orders ... 1n all regions

Alvarez/Casares 2000, Alvarez 2004; GD/Unsal 2014, ...



Resurgence in QM

resurgent relations in QM path integrals with an infinite number of saddles




Resurgence and Phase Transitions: Multi-Parameter Trans-Series

Z(h) = / DA exp (% S[A])

in general, we are interested in many parameters

Z(h) — Z(h,masses, couplings, u, T, B, ...)

¢.g., for a phase transition: large N " thermodynamic limit”
Z(h) — Z(h,N), and N — o0

multiple parameters: different limits are possible
“uniform” ’t Hooft limit: N — oo, h =0 : AN = fixed
trans-series transmutes into a very different form 1n the large N limit

hallmark of a Stokes transition



Phase Transition in the Periodic Potentia; Spectrum
h

E(h, N) —?w”(lz) + cos(z) w(z) = Ew(z)

2.5}

2.0}

1.5}

1.0fwe

0.5}

- N = band/gap label; A = coupling

» phase transition: narrow bands vs. narrow gaps: AN =
- real instantons vs. complex instantons

» phase transition = “instanton condensation”

- universal Stokes transition
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- universal Stokes transition




Resurgence 1n QFT: Euler-Heisenberg Effective Action

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.
Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische
Feld zur Paarerzeugung neigt, eine Abanderung der Ma xwellschen Gleichungen
des Vakuums. Diese Abdénderungen werden fiir den speziellen Fall berechnet,
in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in
dem sich das Feld auf Strecken der Compton-Wellenlinge nur wenig dndert.
Es crgibl sich fiir das Feld eine Lagrange-Funktion:

60s ( Iéi_l V&2 — B2 4 24(E 58)) + konj

2
Q:}_((EE_EBQ)+—€-H 8"’1_@_?2 12 (EDY)- — -
2 ho n’ cos (__fl_ V2 — B2 4 24 (C i”j) — konj
| | Cr | J

2
G+ T @6 )

W\N\QNM + + +

- paradigm of effective field theory Im[ ﬁ] N €—m27r /(e&)
- 1ntegral representation = Borel sum

- analogue of Stark 1onization and Dyson’s argument: “Schwinger effect”



Stokes Phase Transition in QFT

“Schwinger effect” with monochromatic E field: E(t) = £ cos(wt)

mcw Keldysh, 1964;
e& Brezin/Itzykson, 1970;
Popov, 1971

- Keldysh adiabaticity parameter: 7 =

m? ¢

WKB: T'ggp ~ exp {—7’(’ e g(fy)}

2 3 ,
exp [—W e } , <1 (tunneling)
I'QED ~
( e & )4mc:2/hw

mcw

., v>1 (multiphoton)

phase transition: tunneling vs. multi-photon “ionization”

phase transition: real vs. complex instantons (GD, Dumlu,1004.2509, 1102.2899)
similar to the transition for the QM cosine potential
Borel transform 1s no longer meromorphic

SLAC (Snowmass [.ol) & DESY experiments aim to probe the transition region



https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF1-001.pdf
https://arxiv.org/abs/1909.00860
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.250402
https://inspirehep.net/literature/889724

World-line Instantons for Intense Field Physics

Feynman worldline representation for one-loop effective action  Feynman 1949, 1951

>C T 2 T . 2 .
F[A] — —/ d?e_m T/DZC(T)G fO dT(m,u_l_AM(m)ml«b)

0
O. Alvarez/Affleck/Manton;

GD, Schubert
 double saddle-point approximation (cf. Gutzwiller)
E, = F,(x)t, > closed loop with action = S(T, params)
95(T, 5;rams) = —m? » T saddle action = S(m2, params)

* localized intense fields involve complex saddles of the path integral

e particle production = Stokes phenomenon

e interference effects can lead to substantial (exponential) enhancement

» efficient approach to the quantum control problem

» improved semiclassical methods for scattering processes in intense fields




Resurgence and Large N Phase Transitions in Matrix Models

2d lattice Yang-Mills: Gross-Witten-Wadia unitary matrix model

Gross-Witten, 1980

N
Z(t,N) = / DU exp | —tr (U + UT) Wadia, 1980
U(N) t

Marino, 2008

/. depends on two parameters: 't Hooft coupling t, and matrix size N

C/Nz _ | T T 1 I
N .500 | =
Z(t,N) :det [[J_k (7 a4k : 2l
7,k=1,...N
2+ =
3rd order phase transition in the R B P
“thermodynamic” 1arge N hmlt ZFIG. 2. The specific heat per degree of freedom, C/

N*, as a function of A (temperature).

“order parameter” A(¢, N) = (det U) = physical observables

NZA A
12 (1 o AQ) — 1 — A2 (N2 o tz (A/)2> P. Rossi 1982

nonlinear ODE: 1deal for resurgent analysis

A" LA A



Resurgence in Weak Coupling Large N Trans-Series

ODE = large N weak coupling trans-series: Ahmed, GD, 2017

> d(o)
AN ~VI=t),

|gweak e_Nsweak(t) - d%l)(t)

Nzn \/47TN Weak() Z N™

n=0

weak coupling large N action:

2¢/1 — 1
t

Sweak (t) = — 2 arctanh (\/ 1 — t)

“one-instanton" fluctuations: coefticients are functions of ¢

id%”(t) L B -12t-8) 1
N© T 96(1—t)3/2 N T

n=0



Resurgence in Weak Coupling Large N Trans-Series

ODE = large N weak coupling trans-series: Ahmed, GD, 2017

> d(o)
AN ~VI=t),

|gweak e_Nsweak(t) - d%l)(t)

Nzn \/47TN Weak() Z N™

n=>0
weak coupling large N action:
21—t
Sweak (t) = ; — 2 arctanh (\/ 1 — t)

“one-instanton" fluctuations: coefticients are functions of ¢

i dV ) LB o12-8)1
n _ 4£)3/2 S

— N 96(1 —t)3/2 N

resurgence: large-order growth of “perturbative coefficients”:

—1 ['(2n — 2) - (3t — 12t — 8) Sweak ()

V2(1 = £)3/473/2 (S yenr (1)) 273 96(1 —¢)3/2 (2n— 1)

dy) (t) ~



Resurgence 1n Strong Coupling Large N Trans-Series

* large N strong-coupling: A(t,N) =~ o Jn <¥>
* Debye expansion: completely different trans-series

0O (¢
DI

t €_NS tr Ong(t)

\/QWN‘ strong

\/QWN’ strong

3
1 ( t e~ N Sstrong (1) iUfr(zl)(t)
)

* large N strong-coupling action:  Sg,.,.(t) = arccosh(t) — \/ 1 —
 low-order/large-order resurgence relation (for all #):

(QSstrong (t))

|

U, (t) ~ D) - 1)! (1+U1(t)

27 (2Sstrong (1)) (n—1)



Temperature (MeV)

150

Resurgent Extrapolation

O. Costin, GD: 1904.11593, 2003.07451
2009.01962, 2108.00145

* sometimes perturbation theory/asymptotics 1s the ONLY thing we can do

e resurgence implies perturbation theory encodes non-perturbative physics

e practical question: how much global non-perturbative information can
be decoded from a FINITE number of perturbative coefficients ?

Quark-Gluon Plasma

Critical
Point?

Nuclear

Vacuum Matter \ Superconductor
PR [ T T T ~ | i

N

L I L L L I 1 L
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Baryon Doping — ug (MeV)
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Basar, GD, Yin: 2112.14269
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15}F

e
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[ ]

) [

[ ] ®

- —

- Re[x]
- 15 ® - ‘O ® - 5.

-15:' O. Costin, GD:

1904.11593
tritronquee of Painleve I eqn.



https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2009.01962
https://arxiv.org/abs/2108.01145
https://arxiv.org/abs/2112.14269
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» weak to strong B field extrapolation ?
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» weak to strong B field extrapolation ?

start with just 10 terms
* B field to E field analytic continuation ?
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e accurate over many orders of magnitude (from just 10 input terms!)
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Resurgent Extrapolation: Euler-Heisenberg at 2-loop GD, Z. Harris: 2101.10409

» 2 loop: Ritus double-integral representation
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start with just 10 terms

* B field to E field analytic continuation ?
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* accurate over many orders of magnitude (from just 10 mnput terms!)
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Resurgent Extrapolation: new approach to intense-field problems

* In progress: (GD, Z. Harris, to appear)

e application to field inhomogeneities
e application to strong gravitational backgrounds

» don’t struggle with exact integral representations
* instead: use perturbative expansion from the start
* then decode the non-perturbative effects using resurgence

* resurgence suggests that the non-perturbative physics 1s
encoded 1n perturbation theory

* key question: how much perturbative information do we need in
order to reliably reconstruct the non-perturbative physics ?
e new practical decoding procedures 0. Costin, GD: 2009.01962, 2108.00145



https://arxiv.org/abs/2009.01962
https://arxiv.org/abs/2108.01145

Non-perturbative QED: Probing the Ritus-Narozhnyi Conjecture

» QED expansion parameter in a constant crossed field, for x > 1, is ary®/3

X = 6\/ ( uvP ) /m Ritus, Narozhny1: 1970s/80s
1 loop
10) A pm ax 12 Wl 13
2 loops

(2b) IQHL o’xlogx  [14]21]
(2a) @ o®x*Plogx  [16]
(2¢) m o®x**logx  [18]

3 loops

(3a) @ *x*3 log x [17] (3d) :ﬁi: B o ¢ 1T
(3b) ,vw<:§fiii:>ww iy <,

(3f) zf;fgiéﬁﬁszlz o®x log® X 18]
(3c) @ a’x log® x 18] (3g) :EOWQL 0By )

* sophisticated analysis of multi-parameter integrals ... complicated !

Mironov et al: 2003.06909; A. Fedotov: 1608.02261; D1 Piazza et al 2006.15370; Torgrimsson 2007.08492; Heinzl et al
2101.12111, ...



Conclusions

* “resurgence” 1s based on a new and improved form of asymptotics

* deep(er) connections between perturbative and non-perturbative physics

 recent applications to differential eqs, QM, QFT, string theory, ...

* resurgent extrapolation: high-precision extraction of physical information

from finite order expansions

 outlook: computational access to strongly-coupled systems, finite density,
phase transitions, particle production, far-from-equilibrium physics, ...

 Lefschetz thimbles and bions
Further topics not covered today .... « “Exact WKB”
* Chern-Simons theory

* Non-perturbative effective actions
* Yang-Mills & QCD

Dualities and Modularity
Integrability and large N
Renormalons and the OPE

Hopf algebraic renormalization



