Atom Gravimetry, Accelerometery & Interferometry

John Carlton PhD Candidate Department of Physics, KCL

Outline

- Gravimetry and the Equivalence Principle
- Light Interferometry
- Laser Interactions with Atoms
- Creating an Atom Interferometer
- Physics Applications of Light-Pulse Atom Interferometry

Introduction – Gravity and the Equivalence Principle

Equivalence principle: The equivalence of gravitational and inertial mass results in the indistinguishability between being in a gravitational field and an accelerating frame of reference.

Gravimetry

- Traditional gravimeter's measure the displacement of a suspended test mass with respect to a rigid support connected to the ground.
- The equivalence principle then provides a measure of the fluctuating gravitational field from the acceleration of the test mass.

Gradiometry

- Gradiometers measure the relative acceleration between two separate gravimeters in response to a fluctuating gravity field. Their readouts are subtracted to cancel noise from seismic waves etc.
- Gradiometers are sensitive to the gradient of Earth's gravitational field:

$$g(z) = g + (\partial_z g)z = g + (T)z$$

5

Atom Gradiometer

- AION is an example of an atom gradiometer.
- Free-falling cold atoms act as test masses for each interferometer.
- The atoms are split to travel along different paths before interfering and measuring the result.

A O N Atom Interferometer Observatory and Network

Interference

 Classically, waves "interfere" to produce a constructive or destructive outcome, simply by adding their amplitudes.

 Waves passing through two slits produce an interference pattern made up of light and dark regions.

Laser Interferometry

Towards Atom Interferometry

Consider a two-level atom:

Laser Interactions with Atoms

Rabi Oscillations and Laser Properties

 Frequency: A laser tuned to the resonant frequency of the energy gap in a two-level atom causes the system to undergo oscillations:

$$\omega_0 = \left(E_2 - E_1\right)/\hbar$$

 Time: The laser splits the population of a cloud of atoms between the two states, depending on the time the laser is applied. "Mirror" pulse: $t_{\pi}=\pi/\Omega$ "Beam-splitter" pulse: $t_{\pi/2}=\pi/2\Omega$

Constructing Atom Interferometer Sequences

Constructing Atom Interferometer Sequences

Constructing Atom Interferometer Sequences

Atom fringes

$$\Delta \phi_{MZ} = kgT^2$$

Atom Interferometer Phase Shifts

• The leading order phase shift of atoms in a MZ atom interferometer is:

$$\Delta \phi_{MZ} = kgT^2$$

• The phase shift can be thought of in three separate components:

$$\Delta\phi_{\rm Total} = \Delta\phi_{\rm Prop} + \Delta\phi_{\rm Laser} + \Delta\phi_{\rm Sep}$$

- Atoms propagating in a gravitational field acquire phase shifts.
- Laser waves carry an intrinsic phase which is imprinted on the atoms as they interact through beam-splitter or mirror pulses.
- When the two paths of the atoms converge, small separations in space in the classical paths of the atoms at the output port may cause a phase shift.

Atom Gradiometers – AION

Badurina et al. (2109.10965) ¹⁶

Atom Interferometry for Fundamental Physics

Al setups are sensitive to changes in fundamental constants induced by Dark Matter:

$$m_e(t, \mathbf{x}) = m_e \left[1 + d_{m_e} \sqrt{4\pi G_N} \phi(t, \mathbf{x}) \right]$$
$$\alpha(t, \mathbf{x}) \approx \alpha \left[1 + d_e \sqrt{4\pi G_N} \phi(t, \mathbf{x}) \right].$$

Boosting Sensitivity

Fig. 31 Gravity perturbations from a uniformly moving point mass. In the left plot, distance between test masses is kept constant at L = 500 m, while in the right plot speed is kept constant at 20 m/s

Summary

- The quantum properties of atoms allow the construction of interferometers which act as sensitive gradiometers with freely falling cold atoms as test masses.
- The phase shift measured in atom interferometers are sensitive to fluctuations in a gravitational field from a range of sources.
- Atom interferometers can be used to search for new fundamental physics with more work to be done characterising background sources.