Supernova Neutrino Detection: Water Cherenkov Detectors

7th April 2022 IoP HEPP / APP Topical Workshop: Supernova Neutrinos in the Multimessenger Era

Outline

- Introduction to supernova neutrinos
- A brief history of supernova neutrino detection
- Interactions in water Cherenkov detectors
- The next galactic supernova burst
- Supernova relic neutrinos
- Complementarity with other detection media

Introduction: Progenitors

7 Apr 2022

- Electrons captured on nuclei produce v_e via: $e^- + A(N,Z) \rightarrow v_e + A(N+1,Z-1)$
- Mean free path of neutrinos > core size
- Neutrinos escape promptly

- Core density increases as collapse continues
- \bullet Mean free path of ν shrinks w/ increasing density
- Neutrinos trapped by scattering off nuclei: $v + A(N,Z) \rightarrow v + A(N,Z)$

- Inner core reaches nuclear densities
- Neutron degeneracy halts gravitation attraction
- Inner core rebounds, causing shock wave
- Shock wave propagates through infalling outer core
- Larger $\nu\text{-sphere};\,\nu\text{s}$ still emitted from outer core

- Shock slows infalling matter and separates nucleons
- Shock loses energy (8 MeV) per dissociated nucleon
- Electrons captured on dis. protons produce v_e via:

 $e^- + p \rightarrow Ve + n$

• Liquid argon detectors particularly sensitive to this signal!

10 km

- Egrav → Etherm, about 10⁴⁶ Joules
- T \approx 40 MeV \approx 500,000,000,000 K
- Cooling via \mathbf{v} emission
 - All six types of neutrinos emitted
- Neutron star (or black hole) left behind

$$\begin{array}{l} e^- + p \rightarrow \nu e + n \\ e^+ + n \rightarrow \overline{\nu} e + p \\ e^- + e^+ \rightarrow \nu + \overline{\nu} \\ e^\pm + N \rightarrow e^\pm + N + \nu + \overline{\nu} \\ N + N \rightarrow N + N + \nu + \overline{\nu} \\ \gamma \ (+ e^\pm) \rightarrow \nu + \overline{\nu} \end{array}$$

Luminosity & Mean Energy

Figures shown here represent Nakazato *et al* model (*Astrophys. J. Suppl.* **205** (2013)) for a progenitor of 20 solar masses

7 Apr 2022

Multimessenger: v and γ Neutrinos (v)Photons (γ)

- 99% of the energy from a core-collapse supernova is released as neutrinos
- v emitted during SN, giving unique insight into the process of a supernova & neutron star formation
- v carry information direct from core; no scattering!
- v are not obscured by interstellar media in the galactic plane

- Photons are much easier to detect than neutrinos!
- Photons are emitted hours later, largely from decay of radioactive elements produced in the supernova's shock wave, providing information from after the core-collapse

History of Supernova v Detection

- To date, only supernova v burst came from Sanduleak 69 202 in Large Magellanic Cloud (~51.4 kpc distance)
- Observed on 24th Feb 1987, this is of course – the famous supernova 1987A
- 24 (or 25) supernova neutrinos seen in three neutrino telescopes:
 - 11 (or 12) at Kamiokande [Japan]
 - 8 at Irvine-Michigan-Brookhaven (IMB) [USA]
 - 5 at the Baksan Observatory [USSR]
- Both Kamiokande and IMB are water Cherenkov detectors

ernova v Detection

- To date, only supernova v burst came from Sanduleak 69 202 in Large Magellanic Cloud (~51.4 kpc distance)
- Observed on 24th Feb 1987, this is of course – the famous supernova 1987A
- 24 (or 25) supernova neutrinos seen in three neutrino telescopes:
 - 11 (or 12) at Kamiokande [Japan]
 - 8 at Irvine-Michigan-Brookhaven (IMB) [USA]
 - 5 at the Baksan Observatory [USSR]
- Both Kamiokande and IMB are water Cherenkov detectors

7 Apr 2022

Water Cherenkov Detectors

- Running or previous water Cherenkov neutrino detectors include:
 - IMB
 - Kamiokande
 - Baikal
 - Super-Kamiokande
 - Antares
 - IceCube
 - ANNIE
- Technique also used for observing gamma rays (*e.g.*, HAWC) and cosmic rays (*e.g.*, Pierre Auger)
- Future planned water Cherenkov neutrino detectors include:
 - KM3Net
 - IceCube Gen2
 - Hyper-Kamiokande
 - IWCD

Water Cherenkov Detectors

7 Apr 2022

Supernova Neutrino Interactions in a water Cherenkov detector

 Positron emission is (roughly) nondirectional

7 Apr 2022

10

20

10⁻⁶

10-7

70 80 90 Neutrino Energy (MeV

Supernova Neutrino Interactions in a water Cherenkov detector

- Dominant cross-section is inverse beta decay (IBD):
 - $\overline{\nu}_e + p \rightarrow e^+ + n$
- Sub-dominant interaction is elastic scattering:
 - $v + e \rightarrow v + e$
 - Preserves direction information
- Other modes are highly model dependent, due to threshold effects:

$$v_e$$
 + ¹⁶O \rightarrow e + ¹⁶F (E_{thresh} = 15 MeV)

Supernova Neutrino Interactions in a water Cherenkov detector

• Most charged-current ¹⁶O events originate from v_x that undergo MSW oscillation within the supernova

7 Apr 2022

Supernova Neutrino Results since 1987

SEARCH FOR SUPERNOVA NEUTRINO BURSTS AT SUPER-KAMIOKANDE The Super-Kamiokande Collaboration

Astrophys.J.669:519-524,2007

FIG. 6.— The probability of detecting supernovae assuming a specific supernova model at SK. Full (100%) detection probability is retained out to around 100 kpc. Concise summary of results: No burst

See upcoming talk by Jost Migenda on preparations to do model discrimination when the next burst arrives

7 Apr 2022

Supernova Relic Neutrinos sometimes known as "diffuse supernova neutrino background"

- SRN should be an isotropic signal composed of v from **all** previous core-collapse supernovae
- Predictions obtained by taking v spectrum from single SN and redshifting according to SN rate
- Natural energy window to search
- Massive stars that die in core-collapse burn through fuel quickly and have relatively short lives
- Thus, SN rate is a good tracker of star formation rate!

Supernova Relic Neutrino Searches

- First "modern" search performed at Super-K nearly 20 years ago
- Irreducible backgrounds prevented discovery
- May be possible to overcome by taking advantage of IBD structure
 7 Apr 2022
 Matthew Malek

Supernova Relic Neutrino Searches

- IBD events produce positron and neutron
- In 2008, Super-K upgraded its electronics to see the 2.2 MeV gamma released when neutron captures on free proton (hydrogen)

⁷ Apr 2022

Future SRN Searches

• Super-Kamiokande has been upgraded to include gadolinium:

Thermal Capture Cross Sections: A Comparison of ENDF/B-VI to RPI Results*

Thermal Capture Cross Sections							
		ENDF			RPI		
Isotope	Abundance	Thermal Capture	Contribution to Elemental	Percent	Thermal Capture	Contribution to Elemental	Percent
152 Gd 154 Gd 155 Gd 156 Gd 157 Gd 158 Gd 160 Gd	0.200 2.18 14.80 20.47 15.65 24.84 21.86	1 050 85.0 60 700 1.71 254 000 2.01 0.765	2.10 1.85 8980 0.350 39800 0.499 0.167	0.00430 0.00379 18.4 0.000717 81.6 0.00102 0.000342	$ \begin{array}{r} 1050\\85.8\\60200\\1.74\\226000\\2.19\\0.755\end{array} $	2.10 1.87 8910 0.356 35400 0.544 0.165	0.00430 0.00422 20.1 0.000804 79.9 0.00122 0.000372
Gd	_		48800	100.0		44 300	100.0

*The units of all cross sections are barns. The units of abundance are percent.

G. Leinweber et al., Nucl.Sci.Eng. 154:261 (2006)

Cross-section for neutron capture is:

- ~49,000 barns for natural Gd
- 0.3 barns for H

0.1% Gd concentration results in ~90% of neutrons capturing on Gd

7 Apr 2022

Future SRN Searches

• Super-Kamiokande has been upgraded to include gadolinium:

7 Apr 2022

- In ordinary water, neutron thermalizes, then is captured on a free proton
 - Capture time is \sim 200 µsec
 - 2.2 MeV gamma emitted
 - Detection efficiency @ SK is ~20%

When n captured on water with 0.1% Gd:

- Capture time \sim 30 µsec
- ~8 MeV gamma cascade
- 4 5 MeV visible energy
- > 70% detection efficiency
- See upcoming talk by Liz Kneale on coincidence reconstruction in Gd-loaded water Cherenkov

Other Detection Media

- Water Cherenkov detectors have the advantage of being able to build very large with cheap material
- Other detector media have complementary capabilities

Liquid argon is sensitive to the $\nu_{\rm e}$ signal from the neutronisation burst via:

$$v_e + {}^{40}\text{Ar} \rightarrow e + {}^{40}\text{K}^*$$

7 Apr 2022

Liquid scintillator has lower energy thresholds and better energy resolution

Other Detection Media

See upcoming talk from Sammy Valder on supernova neutrino studies in liquid argon (DUNE) and liquid scintillator (SNO+)

7 Apr 2022

Summary

- Supernova neutrinos give us a unique handle to understand the core-collapse mechanism.
- Waiting > 35 years for next supernova neutrino burst, but we have not been idle! New detectors and analysis techniques make us well prepared for when those neutrinos arrive.
- With the new addition of gadolinium, Super-Kamiokande is well-positioned to make first discovery of supernova relic neutrinos.
- Water Cherenkov detectors are a well-established tool for supernova neutrino detection.
- New (and larger) water Cherenkov detectors will be coming online in the near future, such as KM3Net and Hyper-Kamiokande.
- Neutrino detectors with different targets, such as liquid argon & liquid scintillator, have complementary advantages.
- In the multimessenger era, we are starting to explore synergies with gravitational wave detectors, etc.
- Exciting times ahead... now we just need a nearby star to explode!

Thank you for listening!

