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Outline 
● Introduction to supernova neutrinos
● A brief history of supernova neutrino detection
● Interactions in water Cherenkov detectors
● The next galactic supernova burst
● Supernova relic neutrinos
● Complementarity with other detection media
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Introduction: Core Collapse

● Electrons captured on nuclei produce e via:
e– + A(N,Z) → e + A(N+1,Z-1)

● Mean free path of neutrinos > core size
● Neutrinos escape promptly
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Introduction: Core Collapse

● Core density increases as collapse continues
● Mean free path of  shrinks w/ increasing density

● Neutrinos trapped by scattering off nuclei:
 + A(N,Z) →  + A(N,Z)
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Introduction: Core Collapse

● Inner core reaches nuclear densities
● Neutron degeneracy halts gravitation attraction
● Inner core rebounds, causing shock wave
● Shock wave propagates through infalling outer core
● Larger -sphere; s still emitted from outer core
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Introduction: Core Collapse

● Shock slows infalling matter and separates nucleons
● Shock loses energy (8 MeV) per dissociated nucleon
● Electrons captured on dis. protons produce e via:

e– + p → e + n

● Liquid argon detectors particularly sensitive to this signal!
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Introduction: Core Collapse

● Egrav → Etherm, about 1046 Joules
● T  40 MeV  500,000,000,000 K
● Cooling via  emission 

● All six types of neutrinos emitted
● Neutron star (or black hole) left behind 

e– + p  e + n
e+ + n  e + p
e– + e+ + 

e±+N e± + N + +  
N+N N + N + + 

+ e±) + 
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Core Collapse Summary

Image from Janka, H.Th. et al
Theory of core-collapse supernovae
Phys. Rep. 442, pp 38 – 74 (2007).
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Luminosity & Mean Energy


e  
= blue dashed


e  

= black solid


x  
= red dotted

Luminosity and mean energy are quite model dependent!

Figures shown here represent Nakazato et al model (Astrophys. J. Suppl. 205 (2013)) for a 
progenitor of 20 solar masses
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Multimessenger:  and 

●  99% of the energy from a core-collapse 
supernova is released as neutrinos 

●   emitted during SN, giving unique insight 
into the process of a supernova & neutron 
star formation

●   carry information direct from core; no 
scattering!

●  are not obscured by interstellar media in 
the galactic plane

Neutrinos () Photons ()
●  Photons are much easier to detect than 

neutrinos!

●  Photons are emitted hours later, largely from 
decay of radioactive elements produced in the 
supernova’s shock wave, providing 
information from after the core-collapse
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History of Supernova  Detection
● To date, only supernova  burst came from 

Sanduleak 69 202 in Large Magellanic 
Cloud (~51.4 kpc distance)

● Observed on 24th Feb 1987, this is – of 
course – the famous supernova 1987A

● 24 (or 25) supernova neutrinos seen in three 
neutrino telescopes:
– 11 (or 12) at Kamiokande [Japan]
– 8 at Irvine-Michigan-Brookhaven (IMB) [USA]
– 5 at the Baksan Observatory [USSR]

● Both Kamiokande and IMB are water 
Cherenkov detectors
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Water Cherenkov Detectors


● Running or previous water Cherenkov neutrino 
detectors include:
– IMB
– Kamiokande
– Baikal
– Super-Kamiokande
– Antares 
– IceCube 
– ANNIE

● Technique also used for observing gamma rays (e.g., 
HAWC) and cosmic rays (e.g., Pierre Auger)

● Future planned water Cherenkov neutrino detectors 
include:
– KM3Net
– IceCube Gen2
– Hyper-Kamiokande
– IWCD
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Supernova Neutrino Interactions
in a water Cherenkov detector

● Dominant cross-section is inverse beta 
decay (IBD)

● e + p → e+ + n

● Comprises ~90% of events seen in a 
water Cherenkov detector

● Positron emission is (roughly) non-
directional

W±
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Supernova Neutrino Interactions
in a water Cherenkov detector

● Dominant cross-section is inverse 
beta decay (IBD):

● e + p → e+
 + n

● Sub-dominant interaction is elastic 
scattering:

●  + e →  + e
– Preserves direction information

● Other modes are highly model 
dependent, due to threshold effects:

● e + 16O → e + 16F (Ethresh = 15 MeV) 
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Supernova Neutrino Interactions
in a water Cherenkov detector

● Most charged-current 16O events originate from x that undergo MSW oscillation within the supernova

● e + 16O → e + 16F (Ethresh = 15 MeV) 

Design Report (Totani ‘98)O.Stone (Garching 2014)Totani 1998 Garching 2014
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Supernova Neutrino Results
since 1987

Astrophys.J.669:519-524,2007

Concise summary of results:
No burst

See upcoming talk by Jost Migenda 
on preparations to do model 
discrimination when the next burst 
arrives
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Supernova Relic Neutrinos
sometimes known as “diffuse supernova neutrino background”

Solar 8B

Solar hep

Atmospheric e

    SRN 
predictions

●  SRN should be an isotropic signal composed of  
from all previous core-collapse supernovae

●  Predictions obtained by taking  spectrum from 
single SN and redshifting according to SN rate
  

●  Natural energy window to search
 

●  Massive stars that die in core-collapse burn 
through fuel quickly and have relatively short lives

●  Thus, SN rate is a good tracker of star formation rate!
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Supernova Relic Neutrino Searches

Atmospheric e

Decay 
electrons

Total background
(Atm. + decay e)

• First “modern” search performed at Super-K nearly 20 years ago 
• Irreducible backgrounds prevented discovery
• May be possible to overcome by taking advantage of IBD structure

M. Malek et al., 
Phys.Rev.Lett. 90:061101 (2003)
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Supernova Relic Neutrino Searches
• IBD events produce positron and neutron
• In 2008, Super-K upgraded its electronics to see the 2.2 MeV gamma released 

when neutron captures on free proton (hydrogen)
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Future SRN Searches
• Super-Kamiokande has been upgraded to include gadolinium:

G. Leinweber et al., Nucl.Sci.Eng. 154:261 (2006)

Cross-section for neutron capture is:
● ~49,000 barns for natural Gd
● 0.3 barns for H

0.1% Gd concentration results in ~90% of neutrons capturing on Gd
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Future SRN Searches
• Super-Kamiokande has been upgraded to include gadolinium:

 

Antineutrino

Proton

Positron

Neutron

Gadolinium

Gamma-rays

Cherenkov Light

Cherenkov Light

● In ordinary water, neutron thermalizes, then is 
captured on a free proton

● Capture time is ~200 msec 

● 2.2 MeV gamma emitted

● Detection efficiency @ SK is ~20%

● When n captured on water with 0.1% Gd:

● Capture time ~30 msec

● ~8 MeV gamma cascade

● 4 - 5 MeV visible energy

● > 70% detection efficiency

● See upcoming talk by Liz Kneale on coincidence 
reconstruction in Gd-loaded water Cherenkov
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Other Detection Media
● Water Cherenkov detectors have the advantage of being able to build 

very large with cheap material
● Other detector media have complementary capabilities

Liquid argon is sensitive to the 
e
 signal 

from the neutronisation burst via:


e
 + 

40

Ar → e + 
40

K*

Liquid scintillator has lower energy 
thresholds and better energy resolution
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Other Detection Media

See upcoming talk from Sammy Valder on supernova neutrino studies in liquid argon (DUNE) and 
liquid scintillator (SNO+)
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Summary
● Supernova neutrinos give us a unique handle to understand the core-collapse mechanism.
● Waiting > 35 years for next supernova neutrino burst, but we have not been idle! New detectors and 

analysis techniques make us well prepared for when those neutrinos arrive.
● With the new addition of gadolinium, Super-Kamiokande is well-positioned to make first discovery of 

supernova relic neutrinos.
● Water Cherenkov detectors are a well-established tool for supernova neutrino detection. 
● New (and larger) water Cherenkov detectors will be coming online in the near future, such as KM3Net 

and Hyper-Kamiokande.
● Neutrino detectors with different targets, such as liquid argon & liquid scintillator, have complementary 

advantages.
● In the multimessenger era, we are starting to explore synergies with gravitational wave detectors, etc.
● Exciting times ahead… now we just need a nearby star to explode!
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Thank you for 
listening!
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