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Gd-water: advances in antineutrino detection

The anti-neutrino interacts
with free protons in the
detector via inverse beta

decay (IBD).
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With gadolinium (Gd) loading, we can
see the IBD as a pair of interactions.



CoRe - Coincidence Reconstruction

CoRe implementation of BONSAI"! combined pair reconstruction uses the additional light from
the neutron to improve reconstruction of IBD events.

Results in:

1. Better vertex resolution and lower reconstruction
threshold.

2. Direction and energy resolution improved
at lower energies.

3. Better rejection of backgrounds due to
‘accidental coincidences’.

[ Branch Optimization Navigating Successive Annealing lterations
M. Smy. Low energy event reconstruction and selection in Super-Kamiokande-III: 30th International Cosmic Ray Conference, (2007)



CoRe - Coincidence Reconstruction

CoRe implementation of BONSAI"! combined pair reconstruction uses the additional light from
the neutron to improve reconstruction of IBD events.

Results in:

1. Better vertex resolution and lower reconstruction
threshold.

2. Direction and energy resolution improved
at lower energies (probably).

3. Better rejection of backgrounds due to
‘accidental coincidences’.

[ Branch Optimization Navigating Successive Annealing lterations
M. Smy. Low energy event reconstruction and selection in Super-Kamiokande-III: 30th International Cosmic Ray Conference, (2007)



CoRe - BONSAI combined likelihood

Likelihood maximisation using all hits from both the prompt and delayed events

INL combined(X,to) = InL,(X,to) + InLy(x, to)

InL(x,to) = HP (At;(x



CoRe - BONSAI combined likelihood

Likelihood maximisation using all hits from both the prompt and delayed events
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CoRe - BONSAI combined likelihood

Likelihood maximisation using all hits from both the prompt and delayed events

INL compined(X,to) = InL,(X,t0) + InLy(X, to)

InL(x,to) = HP (At;(x)))
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CoRe - stability at the centre of the detector

Vertex is hardest to
constrain in the Cherenkov
direction.
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Most difficult towards the
centre of the detector
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Difficulty reconstructing events close to the centre
of the detector increases with detector size.
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CoRe - stability at the centre of the detector

Vertex is hardest to
constrain in the Cherenkov
direction.
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CoRe - stability at the centre of the detector

Vertex is hardest to
constrain in the Cherenkov
direction.
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Difficulty reconstructing events close to the centre
of the detector increases with detector size.
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Expect this improvement to have more significance in a larger detector.
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CoRe - stable down to lowest energies

Vertex resolution stable down to the positron Cherenkov threshold with CoRe
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Power to reject accidental coincidences

Uncorrelated events can occur in accidental
coincidence with each other and mimic the
IBD signal pair.

Thanks to better reconstruction of IBD events
in CoRe:

a measure of fit quality can be used
to help select true IBD events and
reject false pairs.

Fit quality threshold offers powerful
rejection of accidental coincidences.

\

-

ot
®

o
o

o
»

Fraction of events remaining

©
N

Illllllllllllllllll

Uncorrelated events,Gd-WbLS

IBD events,Gd-WbLS

Uncorrelated events,Gd-Water

IBD events,Gd-Water

Reject ~50% of
accidentals
while leaving
signal
untouched.

~
.
~ Y
~ ~
- \\\
«
Sda N B

oo

1

0.6 0.8
BONSAI timing goodness cut

12



CoRe - Coincidence Reconstruction

CoRe implementation of BONSAI"! combined pair reconstruction uses the additional light from
the neutron to improve reconstruction of IBD events.

Results in: How does all this benefit

1. Better vertex resolution and lower recon SN neutrino detection?
threshold. %

2. Direction and energy resolution improved
at lower energies.

3. Better rejection of backgrounds due to
‘accidental coincidences’.
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[ Branch Optimization Navigating Successive Annealing lterations
M. Smy. Low energy event reconstruction and selection in Super-Kamiokande-III: 30th International Cosmic Ray Conference, (2007)



Pre-supernova antlneutrlnos

neutrinos are

remove many of
detectable.
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IC. Simpson et al. Sensitivity of Super-Kamiokande with Gadolinium to Low Energy Antineutrinos from Pre-supernova Emission, The Astrophysical Journal,
Volume 885, Number 2 (2019).



Disentangle /€ scattering to point to SN
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CoRe - for the future of SN antineutrino detection

e Combined reconstruction/neutron-tagging algorithm.
e Stable vertex resolution right down to the IBD threshold.
e Rejection of accidentals via fit quality selection.

e Potential application to pre-SN and directional detection of supernovae.

e CoRe now to be re-factored for open-source use - please contact me for future access.

e.kneale@sheffield.ac.uk

16


mailto:e.kneale@sheffield.ac.uk

BACKUPS

17



CoRe - implementation

BONSAI uses a constraining angle of 6_= 44.75° to create a likelihood which gives
preference to vertices which give a Cherenkov light distribution:

lnﬁ’(x, t(), )\) — lnﬁ(x, to) — )\AQ(X)Q

X

where the value of A depends on whether or not Af(x) = 6. — 6 ¢;; is greater than zero.

Constraining angle was optimised in CoRe for positrons and neutrons in all configurations:

Detector size Detector medium Optimal constraining angle
16'm Gd-water 80°
22 m Gd-water 90°

16 mand 22 m Gd-WbLS None 18



CoRe - background rejection power

Uncorrelated events can occur in
accidental coincidence with each other
and mimic the IBD signal pair.

Thanks to better reconstruction of IBD
events:

a measure of fit quality can be
used to help select true
correlated events and reject
false pairs.

BONSAI fit quality (timing goodness)

where w. are weights calculated
using a wider Gaussian distribution.

(0 =4 nsand o, =50 ns)
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