

Supernova Model Discrimination

Jost Migenda they/them

based on **arXiv:2002.01649** and **arXiv:2101.05269**

Workshop "SN ν in the Multimessenger Era"

@JostMigenda

7 April 2022

... in Hyper-Kamiokande

based on **arXiv:2002.01649** and **arXiv:2101.05269**

Supernova Observations with Hyper-Kamiokande

- HK offers both large statistics and event-by-event energy information
 - Order of magnitude larger than Super-K, DUNE, JUNO
 - IceCube: more events, but no energy information for individual events
- 54k–90k events for SN at 10 kpc
 - ~3k events for SN in LMC
- Directionality: ~1° (via ve-scattering)
- Most sensitive to $\overline{\nu}_e$

Supernova Models

Models by different groups, using various approximations → telling models apart can help understand the explosion mechanism

Model	Mass		events at 10 kpc*	N=100	N=300
Totani arXiv:astro-ph/9710203	$20~M_{\odot}$	1D	19716	140 kpc	81 kpc
Nakazato arXiv:1210.6841	$20~M_{\odot}$	1D	17978	134 kpc	77 kpc
Couch arXiv:1902.01340	$20~M_{\odot}$	1D	27539	166 kpc	96 kpc
Vartanyan similar to arXiv:1804.00689	$9~M_{\odot}$	2D	10372	102 kpc	59 kpc
Tamborra arXiv:1406.0006	$27~M_{\odot}$	3D	25021	158 kpc	91 kpc
35 30 30 25 20 15 10 5 100 200 300 time [ms]	NM Couch Nakazat Tambor Totani Vartany 400 5	40 35 30 30 25 20 20 20 20 20 20 20 20 20 20 20 20 20	100 200 300 40 time [ms]	Couch Nakazato Tamborra Totani Vartanyan Orde	ng 20–520ms after con nce, assuming Normal ering

sntools: A Supernova Event Generator

- Modern & most precise cross-sections for main interaction channels
- Modular & easily extensible
 - Hundreds of SN simulations by different groups (data publicly available via SNEWPY)
 - 8 flavour transforms between SN and detector
 - Water, liquid scintillator & water-based LS
 - Adopted by HK, WATCHMAN, THEIA, SNO+
- Open source: <u>https://github.com/JostMigenda/sntools</u>
 By published in JOSS (<u>DOI:10.21105/joss.02877</u>)

Data Sets

- Used sntools to generate 1000 data sets each for
 - 5 different SN models
 - Normal & inverted mass ordering
 - N=100, 300 events per data set
- Consider 20–520 ms post bounce only
 - Accretion phase is most interesting physically (late times: PNS cooling, similar across models)
 - Can include advanced 3D models, where computing time limitations only allow simulating <1 s

Analysis

- Ran full detector simulation & reconstruction for all data sets
- - E_{reco} > 5 MeV (eliminate low-E backgrounds)
 - Vertex inside fiducial volume (avoid higher backgrounds & worse reconstruction near walls)
- → Of 100 (300) events, 80–85% remain after trigger and cuts
- Per data set: calculate unbinned log-likelihood L for each SN model

 $L = \ln \mathscr{L} = \sum_{\text{evt } i} \ln \left(\frac{d^2 N(t_i, E_i)}{dt \ dE} \right)$

- Based on Loredo&Lamb, Annals N. Y. Acad. Sci. 571 (1989) p. 601–630
- Extended to include multiple interaction channels

Model ComparisonNormal ordering
N=100 evt/dataset

→ Use $\Delta L = L_A - L_B$ to determine whether model A or B better describes any given data set

 \rightarrow Good model separation with just N=100 events

Pairwise Comparison of SN Models

Model Identification, N=100

		Identified as	•			
	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	795	57	122	12	14
	Nakazato	33	961	3	1	2
	Tamborra	84	0	853	33	30
	Totani	4	0	16	979	1
	Vartanyan	0	1	17	3	979

Model Identification, N=100

		Identified as				
	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	795	57	122	12	14
	Nakazato	33	961	3	1	2
	Tamborra	84	0	853	33	30
	Totani	4	0	16	979	1
	Vartanyan	0	1	17	3	979

		Identified as	5			
	Inverted	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	960	35	4	1	0
	Nakazato	8	992	0	0	0
	Tamborra	0	1	858	21	120
	Totani	3	0	20	977	0
	Vartanyan	0	2	105	1	892

Tamborra model similar to Couch (Vartanyan) model in Normal (Inverted) Ordering. Other models are separated well!

Model Identification, N=300

		Identified as	;			
	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	982	2	16	0	0
	Nakazato	1	999	0	0	0
	Tamborra	16	0	980	2	2
	Totani	0	0	0	1000	0
	Vartanyan	0	0	0	0	1000

		Identified as	3			
	Inverted	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	999	1	0	0	0
	Nakazato	0	1000	0	0	0
	Tamborra	0	0	974	1	25
	Totani	0	0	0	1000	0
	Vartanyan	0	0	8	0	992

Higher statistics reduce random fluctuations & improve accuracy.

... and beyond Hyper-Kamiokande

SN Model Discrimination by Super-K

- + Works for any ν detector that can measure t, E of individual events
- For Super-K, scale with detector volume to get a rough estimate
- SK is 8× smaller than HK, so expect similar capability for a SN that is $\sqrt{8} \approx 2.8$ × closer

Model	Mass		events at 10 kpc*	N=100	N=300
Totani arXiv:astro-ph/9710203	$20~M_{\odot}$	1D	19716	140 kpc	81 kpc
Nakazato arXiv:1210.6841	$20~M_{\odot}$	1D	17978	134 kpc	77 kpc
Couch arXiv:1902.01340	$20~M_{\odot}$	1D	27539	166 kpc	96 kpc
Vartanyan similar to arXiv:1804.00689	$9~M_{\odot}$	2D	10372	102 kpc	59 kpc
Tamborra arXiv:1406.0006	$27~M_{\odot}$	3D	25021	158 kpc	91 kpc
					21-34 Rpc for Super-k

SN Model Discrimination by WATCHMAN

- Works for any v detector that can measure t, E of individual events
- Detailed analysis by WATCHMAN/NEO finds comparable results (IBD only; using 3 models: Nakazato, Vartanyan, Warren)
- Also used this to benchmark different potential detector configurations: detector volume & photocoverage

				Tank Size			
Number of expected events 💽		Coverage	14m	16m	18	m	20m
		20%	21	39	6	4	100
Model discrim. accuracy IJ		40%	21	40	6	7	104
		Tank Size					
PMT Coverage	14m		16m	18m			20m
20%	75.6 – 80	0.6% 86.	4 - 89.6%	92.3 – 94	.0%	96.5	5 – 97.8%
40%	76.5 – 80	.4% 86	8 - 88.7%	92.9 – 94	.8%	98.2	2 – 99.0%

Work by Yan-Jie Schnellbach (Liverpool), presented at IOP APP/HEPP/NP Conference 2021

- So we can tell apart completely different models ... but what about more closely related ones?
- Necessary to constrain progenitor properties (e.g. mass, metallicity, ...)

- So we can tell apart completely different models ... but what about more closely related ones?
- Necessary to constrain progenitor properties (e.g. mass, metallicity, ...)
- Initial study in my PhD thesis:
 - 300 events (60–100 kpc)
 - Nakazato model
 - 13, 20, 30 M_{sol}
 - + $20 M_{sol}$ with 2 metallicities

- So we can tell apart completely different models ... but what about more closely related ones?
- Necessary to constrain progenitor properties (e.g. mass, metallicity, ...)
- Initial study in my PhD thesis:
 - 300 events (60–100 kpc)
 - Nakazato model
 - 13, 20, 30 M_{sol}
 - + 20 M_{sol} with 2 metallicities

		Identified as	S		
	Normal Mass Ordering	$13 \ M_{sol}$	$20 \ M_{sol}$	$20 \mathrm{M}_{\mathrm{sol}}^{*}$	$30 \ M_{sol}$
del	13 M _{sol}	878	61	61	0
mo	$20 \ M_{sol}$	17	944	39	0
Irue	$20 \mathrm{~M_{sol}}^*$	74	75	850	1
	30 M _{sol}	0	0	0	1000

- So we can tell apart completely different models ... but what about more closely related ones?
- Necessary to constrain progenitor properties (e.g. mass, metallicity, ...)
- Initial study in my PhD thesis:
 - 300 events (60–100 kpc)
 - Nakazato model
 - 13, 20, 30 M_{sol}
 - + $20 M_{sol}$ with 2 metallicities

		Identified as	S		
	Normal Mass Ordering	$13 \ M_{sol}$	$20 \ M_{sol}$	$20 \mathrm{M}_{\mathrm{sol}}^{*}$	$30 \ M_{sol}$
del	13 M _{sol}	878	61	61	0
mo	$20 \ M_{sol}$	17	944	39	0
True	20 M _{sol} *	74	75	850	1
_	30 M _{sol}	0	0	0	1000

- New pre-print by Olsen & Qian (<u>arXiv:2202.09975</u>)
 - Compare simulations with different progenitor masses (9.6, 18.6, 20, 27 M_{sol}) and equations of state (SFHo, LS220)
 - Simpler detector model (Super-K-like), more sophisticated statistical approach
 - Maximum distance to distinguish models is 10–25 kpc

Beyond Neutrinos

- Gravitational waves
 - Complementary ways of studying the SN core!
 - A few simulations provide both v and GW signals
 (Warren et al., DOI:10.3847/1538-4357/ab97b7) → enables cross checks and/or joint likelihood function for improved accuracy
- Electromagnetic
 - Complementary ways of extracting information on the progenitor!
 - ... and its core? (Barker et al., <u>arXiv:2102.01118</u>)
 - Relies on stellar evolution code?
- Plenty of room for discussion today!

Conclusions

- Hyper-Kamiokande (high event rate & event-by-event energy information) can tell SN models apart even at ~100 kpc distance
 - ≥80% able to identify true model with 100 evts
 - ≥97% accuracy with 300 evts
 - If mis-ID: only by very narrow margin → can at least narrow down list of possible models
- Similar techniques can be adopted by other neutrino detectors (e.g. WATCHMAN, SK-like)
- First analyses show potential to identify progenitor properties
- Complementarity with GW & EM possible