

4 April 2022 Supernova Neutrinos in the Multimessenger Era

ELECTROMAGNETIC FOLLOW-UP OF SNE AND THE GRAVITATIONAL WAVE OPTICAL TRANSIENT OBSERVER

Joe Lyman, University of Warwick

UKRI Future Leaders Fellow

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

ELECTROMAGNETIC DISCOVERY OF SNE

ELECTROMAGNETIC DISCOVERY OF SNE SPOT THE DIFFERENCE

ELECTROMAGNETIC DISCOVERY OF SNE SPOT THE DIFFERENCE

ELECTROMAGNETIC DISCOVERY OF SNE DATA SCALES

Full moon: 🌑

Previous Galaxy:

GOTO field of view:

MULTI-MESSENGER CONSIDERATIONS

MULTI-MESSENGER CONSIDERATIONS BRIGHTNESS!

SN 2014J @ 3.5 Mpc

The SN is also prominent on R-band photometry from the P48 prior to January 21 [...] but remained undetected by our automated software due to pixel saturation.

Goobar+ 2014

MULTI-MESSENGER CONSIDERATIONS BRIGHTNESS!

SN 2014J @ 3.5 Mpc

The SN is also prominent on R-band photometry from the P48 prior to January 21 [...] but remained undetected by our automated software due to pixel saturation.

Goobar+ 2014

Killestein, JL+ 2021

MULTI-MESSENGER CONSIDERATIONS MILKY WAY EXTINCTION AND CROWDEDNESS

Property

Brightness of stars

Density of stars

Attenuation of light (extinction)

Joe Lyman – KCL – SN neutrinos – Apr 2022

Difficulty finding/extracting SN in difference image

Effect

Difficulty finding/extracting SN in difference image

Fainter and Redder SN

MULTI-MESSENGER CONSIDERATIONS MILKY WAY EXTINCTION AND CROWDEDNESS

An example SN @ 8.5 kpc

	~No extinction (Av ~ 0 mag)	Low extinction (Av < 10 mag)	Moderate extinction (15 < Av < 25 mag)	High extinction (Av > 30)
Optical (~550nm)	-2.5 mag	< 7.5 mag	Between 12- 22 mag	> 27.5 mag
Near- infrared (~1200nm)	-2.5 mag	0.5 mag	Between 2-5 mag	> 6.5mag

Attenuation of light (extinction)

Joe Lyman – KCL – SN neutrinos – Apr 2022

Fainter and Redder SN

MULTI-MESSENGER CONSIDERATIONS MILKY WAY EXTINCTION AND CROWDEDNESS

"naked eye"/amateur astronomers

An example SN @ 8.5 kpc

Barely observable with Hubble

Joe Lyman – KCL – SN neutrinos – Apr 2022

Attenuation of light (extinction)

E§A/Gaia

ELECTROMAGNETIC CAPABILITIES

THE EM COMMUNITY'S RESPONSE TO TRIGGERS CUES FROM EXISTING ALERTS

- Huge, (somewhat) coordinated effort following Graviational-wave triggers (esp. GW170817)
 - Even in the absence of pre-allocated time on many facilities
- Provided the confidence is given with a trigger, most EM facilities are comfortable receiving marginal alerts
 - e.g. IceCube Neutrino alerts.

GW190814 (ENGRAVE collab 2020)

Joe Lyman – KCL – SN neutrinos – Apr 2022

ESA/Gaia

EM DISCOVERY FACILITIES WIDE-FIELD SKY SURVEYS

Gattini-IR

- Field of views 10s of sq. degree
 - ~1-10s of unit telescopes
- Optical [NIR] depths of 18-23 [16] mag
 - ~0.1-1m apertures
- Saturation around 9-12 mag
- Cadence of 1-few days
 - Sky coverage 1000s sq. degree/night

High spatial resolution

- Effective resolution of 3.8e14 cm (less than Neptune's orbit) at 8.5 kpc
- Resolved observations in
 4-5days assuming
 10,000km/s expansion

High spatial resolution

- Effective resolution of 3.8e14 cm (less than Neptune's orbit) at 8.5 kpc
- Resolved observations in 4-5days assuming 10,000km/s expansion

High spectral resolution

HST / Gal-Yam+ 2022

Probe immediate surroundings
and mass loss of progenitor star
Spectropolarimetric
observations probe asymmetry
of elemental- and bulk-ejecta

High spatial resolution

- Effective resolution of 3.8e14 cm (less than Neptune's orbit) at 8.5 kpc
- Resolved observations in 4-5days assuming 10,000km/s expansion

High spectral resolution

HST / Gal-Yam+ 2022

Probe immediate surroundings and mass loss of progenitor star Spectropolarimetric observations probe asymmetry of elemental- and bulk-ejecta

High temporal resolution

- Pre-explosion variability probes final stages of stellar evolution
- Post-explosion short-timescale
 variability probes circum stellar medium
 inhomographicities
- inhomogeneities

Kilpatrick+ 2021/ Killestein+ in prep

High spatial resolution

- Effective resolution of 3.8e14 cm (less than Neptune's orbit) at 8.5 kpc
- Resolved observations in 4-5days assuming 10,000km/s expansion

High spectral resolution

HST / Gal-Yam+ 2022

Probe immediate surroundings and mass loss of progenitor star Spectropolarimetric observations probe asymmetry of elemental- and bulk-ejecta

High temporal resolution

- Pre-explosion variability probes final stages of stellar evolution
- Post-explosion short-timescale variability probes circumstellar medium inhomogeneities

Kilpatrick+ 2021/ Killestein+ in prep

Joe Lyman – KCL – SN neutrinos – Apr 2022

Late-time light echoes

HST / Y. Yang+ 2015

- Map the spatial/density distribution of the interstellar medium
- Obtain different viewing angles of the supernova

GOIO

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

goto-observatory.org @GOTOObservatory

EM MULTI-MESSENGER ASTRONOMY

GRBs

GOTO DESIGN AND PURPOSE

- A dedicated wide-field optical survey for detecting EM counterparts of GW sources
- Use small unit telescopes in arrays to create cost-effective, scalable, and adaptable wide-field survey

Joe Lyman – KCL – SN neutrinos – Apr 2022

goto-observatory.org @GOTOObservatory

GOTO PROTOTYPE SYSTEM (2017-2020)

Steeghs+ 2022

La Palma

• 4x40cm f/2.5 unit telescopes

NOT GOTO GTC WHT MAGIC Residencia DIMM

GO^TO

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

GOTO PROTOTYPE SYSTEM (2017-2020)

Steeghs+ 2022

La Palma

- 4x40cm f/2.5 unit telescopes
- 1.25"/pixel (50M pixel CCD)
- 5 slot filterwheel (Baader LRGBC)
- Total field of view ~ 20 sq. degree
- ~20 mag in 60s

100% 90% 80% 70% OTA Throughput OF 60% Baader L 50% Baader R 40% Baader G Baader B 30% 20% 10% 0% 3500 5000 5500 6000 6500 7000 7500 8000 4000 4500 8500 Wavelength (Å) 23 L Dark R Dark G Dark **B** Dark 22 ····· L Bright ····· R Bright ····· G Bright **B** Bright 21 5 σ limiting magnitude BARRAN BARRAN 20 19 18 17 16 60s 15 14 10 100 600 Exposure time (s)

GOTO PROTOTYPE SYSTEM (2017-2020)

GO'ro

Steeghs+ 2022

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERV

- Triggered on 32 GW events in one-half of a LIGO/Virgo observing run
- Reached depths to detect kilonovae comparable to NS-NS GW detector horizons in most cases
- Observing within a few minutes of trigger
 when observability allowed

Gompertz+ 2020

GOTO DEVELOPMENT (2020-2022) NEW HARDWARE

GOTO DEVELOPMENT (2020-2022) "CHALLENGES"

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

Pandemic
Volcano
Hail/Ice
Locusts

GOTO FULL DESIGN

- La Palma node complete with 2x8 UT mounts
- Siding Spring node construction imminent

La Palma node in 2022

GOTO fills in longitudinal gaps for continuous night-sky coverage

GOTO FULL DESIGN

GOTO will survey the entire sky every ~2 days

GOTO FULL DESIGN

Each GOTO node will have a ~80 deg² footprint

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

GOTO is an all-sky, twin-site, wide-field fast EM optical survey

- Final collimation of La Palma telescopes happening now
- Build up "template" images to all difference imaging over next months
- Begin Siding Spring construction over 2022

The University of Manchester

MONASH University

THANK YOU!

- Multi-messenger astronomy offers new means to study exotic transients
- Gravitational-wave EM follow-up is key in next detector runs (2022-2023) to build on the legacy of GW170817
- GOTO is a UK-led project dedicated to multi-messenger science
- GOTO's full design is an all-sky, twin-site, wide-field fast optical • survey
 - La Palma science operations imminent
 - Siding Spring to be completed over 2022
- GOTO will provide a stream of new discoveries and rapid followup, enabled by novel automated classification models

goto-observatory.org @GOTOObservatory

GOIO

GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER