

cherenkov telescope array

VHE Gamma Rays from Supernovae and CTA's Transients Programme

Paula Chadwick, Durham University

Outline

- Detecting VHE gamma rays
- The cosmic ray-supernova connection
- VHE gamma rays and prompt emission from SNe
- The Cherenkov Telescope Array and its transient programme

Space vs. Ground

Space Few MeV to ~100 GeV (Fermi: ~100 MeV to ~100 GeV) Collection area ~ m² -> low instantaneous sensitivity, drop off at high energies Poor angular resolution ~ 1 deg. BUT large field-of-view, all-sky capability

Ground

Few 10s of GeV to few 100 TeV Collection area ~ 10⁴ m² -> excellent instantaneous sensitivity Better angular resolution ~0.1 deg. BUT smaller field-of-view, low duty cycle

 γ -ray enters the atmosphere

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

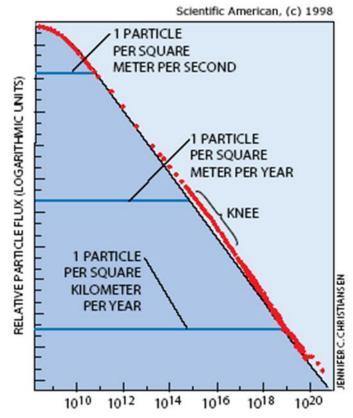
Primary Y

C

e+

Richard White

Present Imaging Atmospheric Cherenkov Telescopes



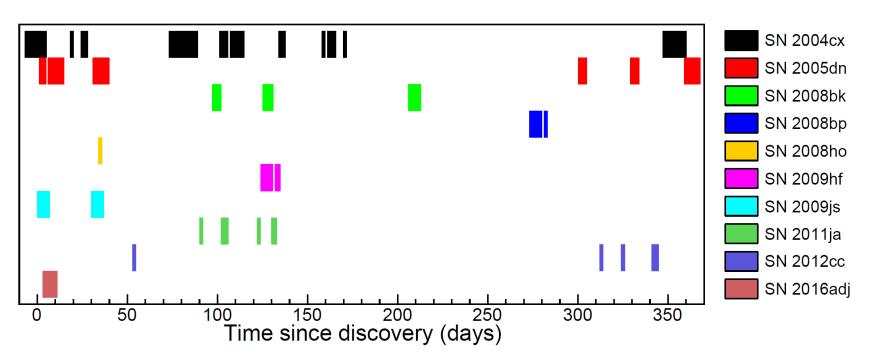
The use of multi-pixel cameras allows for very effective background suppression.

SNe and Cosmic Rays

- Most CRs at least up to ~ 3 x 10¹⁵ eV are Galactic
- One supernova produces around 10⁴⁶ J
- Assume one SN every 100 years
- Provides a total power of ~ 3 x 10³⁶ W
- Each SN needs to put around 10% of its energy into high energy particles to maintain CR flux
- Shock acceleration can naturally explain the power law spectrum
- Heavy elements are also produced naturally
- Several shell SNRs are detected in VHE gamma rays typically a few 100 to a few 1000 y.o.

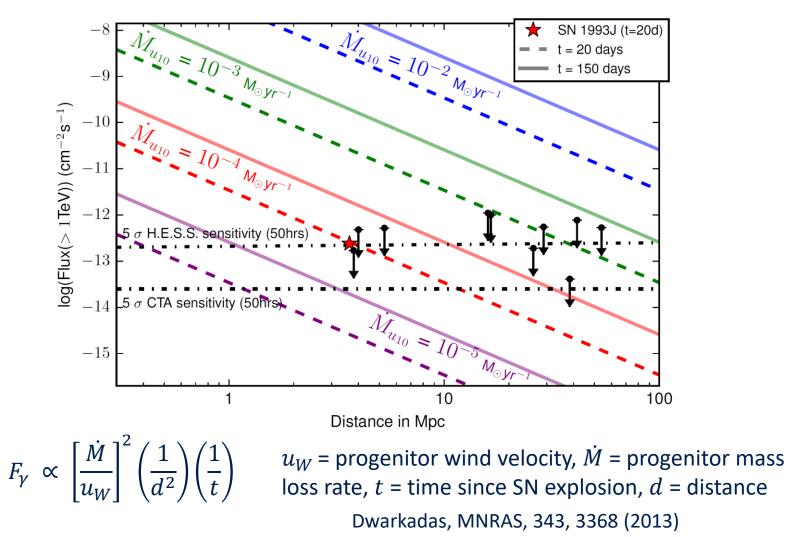
But is it that simple?

- Are we sure the emission is produced by hadrons rather than electrons?
 - Yes for some older remnants interacting with gas ('pion bump' is seen at GeV energies)
 - Neutrino measurements important!
- But no evidence SNRs contain CRs with E ~ 10¹⁵ eV
 - e.g. Cas A (Ahnen et al., A&A, 602, A98 (2017))
- Suggestion that max CR energy is reached days to months after the SN event
 - e.g. Voelk & Biermann (1988), Bell et al. (2013) Cardillo et al. (2015), Marcowith et al. (2018)....
- This requires a high enough circumstellar density
 - Also depends on shock radius & velocity, B-field & turbulence


H.E.S.S. Observations of SNe - 1

- Observations of 10 core-collapse SNe between Dec 2003 and Dec 2014
- Most observations serendipitous, ToO observations of SN216adj
- All extragalactic

SN Name	Host galaxy	RA [J2000]	DEC [J2000]	Dist. [Mpc]	Туре	Disc. date
SN 2004cx	NGC 7755	23h47m52.86s	-30°31′32.6″	26 ± 5	Π	2004-06-26
SN 2005dn	NGC 6861	20h11m11.73s	-48°16′35.5″	38.4 ± 2.7	II	2005-08-27
SN 2008bk	NGC 7793	23h57m50.42s	-32°33′21.5″	4.0 ± 0.4	IIP	2008-03-25
SN 2008bp	NGC 3095	10h00m01.57s	-31°33′21.8″	29 ± 6	IIP	2008-04-02
SN 2008ho	NGC 922	02h25m04.00s	-24°48′02.4″	41.5 ± 2.9	IIP	2008-11-26
SN 2009hf	NGC 175	00h37m21.79s	-19°56′42.2″	53.9 ± 3.8	IIP	2009-07-09
SN 2009js	NGC 918	02h25m48.28s	+18°29′25.8 ″	16 ± 3	IIP	2009-10-11
SN 2011ja	NGC 4945	13h05m11.12s	-49°31′27.0″	5.28 ± 0.38	IIP	2011-12-18
SN 2012cc	NGC 4419	12h26m56.81s	+15°02′45.5″	16.5 ± 1.1	II	2012-04-29
SN 2016adj	NGC 5128	13h25m24.11s	-43°00′57.5″	3.8 ± 0.1	IIb	2016-02-08

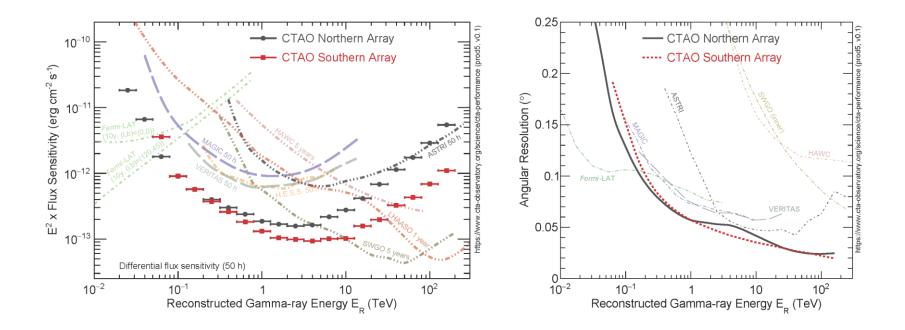

H.E.S.S. Collaboration, Astronomy & Astrophysics, Volume 626, id.A57 (2019)

H.E.S.S. Observations of SNe - 2

- None detected
- Why not?
 - Low mass loss rate/wind velocity of progenitor: environment not dense enough for significant particle acceleration
 - Photon-photon absorption expected to be significant up to ~20 days after SN

The important plot...

10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
1000 γ / h km²	all and a	10 γ / h km²	in star	0.1 γ / h km²
	•			
		•		
		·		
			•	
				-
			of Ch	Southern array erenkov telescopes
Stolen from Werner H	ofmann!		1 4 1 2	about 3 km across
April 2022		Supernovae & Neutrinos	the second s	11


5.

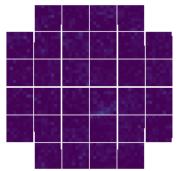
10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
1000		a start	1	a fall
4 x 23 m Ø L	arge Size Telescop	bes (LST)		
	· · · ·			
		•		
		· · ·		
Marken Street				
and the second second				
April 2022		Supernovae & Neutrinos		
100	with a manufacture of the	5	States of the second second second	

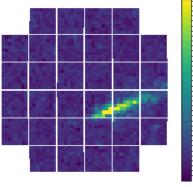
10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
1000		•		
and the state of	4. 24	70 x	4 m Ø Small Size Te	lescopes (SST) (South)
and the second				and the second
and the second				
man and it				
	1 4 / · · ·			
			L	
			a a	
and the second			e	· · · ·
and the state				
		1. · · ·	-	and the second second
the first the state of the stat				
April 2022	a state		eutrinos	
- War	Little a stall	and the second second	and and and a	

CTA Performance – Alpha Configuration

Initial – Alpha – Configuration consists of an array configuration of 4 LSTs and 9 MSTs in the northern site (CTAO-North), and 14 MSTs and 37 SSTs in the southern site (CTAO-South).

UK Contribution – SST Cameras





30 25

0

Collaboration: Australia, Germany, Japan, Netherlands & UK

UK experimental groups: Armagh, Durham, Leicester, Liverpool, Oxford

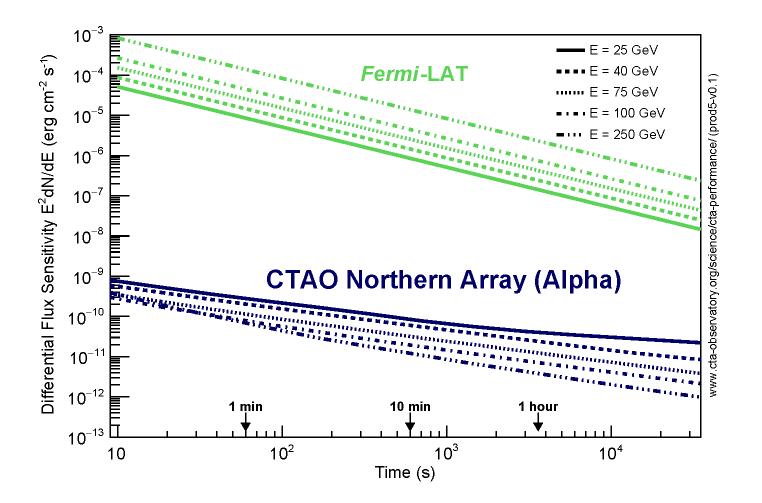
Supernovae & Neutrinos

CTA Science

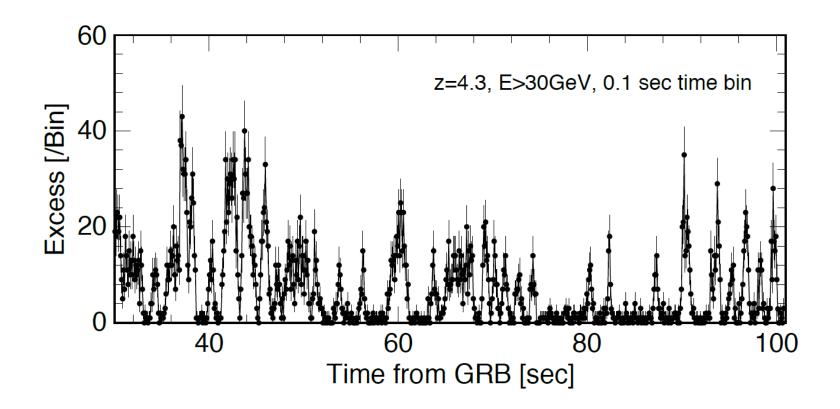
- Theme 1: Cosmic Particle Acceleration
 - How and where are particles accelerated?
 - How do they propagate?
 - What is their impact on the environment?
- Theme 2: Probing Extreme Environments
 - Processes close to neutron stars and black holes?
 - Processes in relativistic jets, winds and explosions?
 - Exploring cosmic voids
- Theme 3: Physics Frontiers beyond the SM
 - What is the nature of dark matter? How is it distributed?
 - Is the speed of light constant for high energy photons?
 - Do axion-like particles exist?

Key Science Projects (KSPs)

- 1. Dark Matter Programme
- 2. Galactic Centre
- 3. Galactic Plane Survey
- 4. Large Magellanic Cloud Survey
- 5. Extragalactic Survey
- 6. Transients
- 7. Cosmic-ray PeVatrons
- 8. Star-forming Systems
- 9. Active Galactic Nuclei
- 10. Clusters of Galaxies
- 11. Beyond Gamma Rays


Image: Superbossa.com, C. Righi

Transients


- Follow-up observations of:
 - Gamma-ray bursts
 - Galactic transients
 - X-ray, optical & radio transients
 - High-energy neutrino transients
 - Gravitational wave events
 - Serendipitious VHE transients (identified with CTA)
- VHE transient survey
 - Using divergent pointing to cover a large FoV

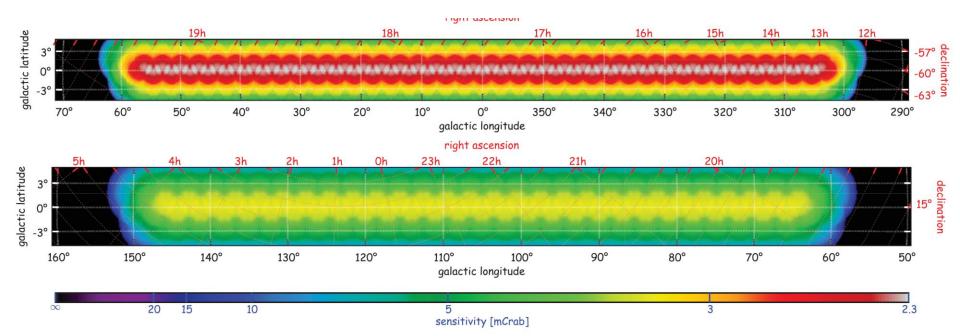
Instantaneous Sensitivity

Simulated GRB Light Curve

Simulated CTA light curve of GRB 080916C at z = 4.3 at E > 30 GeV with 0.1s time binning plotted from 30 s after burst offset.

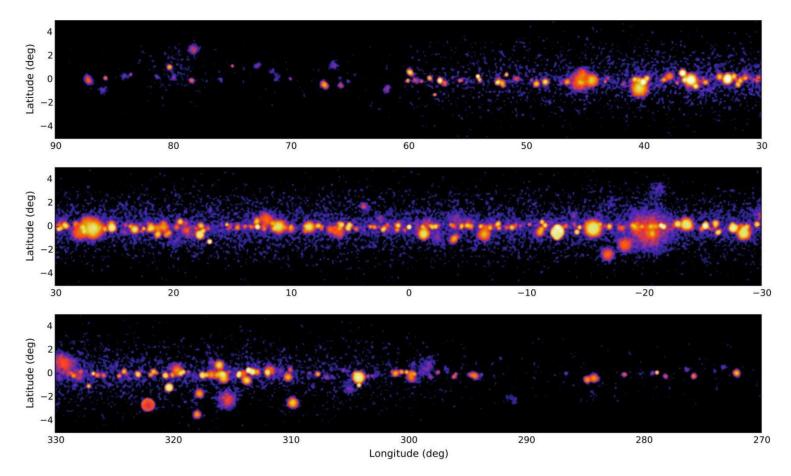
Stay tuned: https://www.cta-observatory.org

With thanks to all my colleagues in CTA from whom I stole slides, graphs etc.


Backup Slides

Milestones

- ERIC signed 2022
- Five years of construction thereafter
- Early science 2024/5?
- Dependent on status as we come out of the pandemic


Survey Coverage

	STP (Years 1 – 2)		Total (Years 1 – 10)	
Galactic Longitude	Sensitivity	Eq. Exposure	Sensitivity	Eq. Exposure
SOUTH				
300° – 60° , Inner region	2.7 mCrab	11.0 h	1.8 mCrab	28.6 h
240° – 300° , Vela, Carina			2.6 mCrab	13.2 h
210° – 240°			3.2 mCrab	8.8 h
NORTH				
$60^{\circ} - 150^{\circ}$, Cygnus, Perseus	4.2 mCrab	6.3 h	2.7 mCrab	15.8 h
$150^{\circ} - 210^{\circ}$, anti-Centre, etc.			3.8 mCrab	7.9 h

Image shows coverage after the first 2 years of full operation.

Potential for Source Confusion

Simulation of CTA GPS based on source populations – MWL observations will be a must.