

Gravitational Waves and Supernovae

Patrick SuttonCARDIFF
UNIVERSITYCardiff UniversityPRIFYSGOL
CAERDYD

Outline

- Gravitational-wave detectors
- CCSNe as GW sources
- Observing schedule
- Science from CCSN GWs

The Global GW Observatory Network (2022)

+ LIGO-India (c2025+)

07 April 2022

GW Detectors: Interferometers

07 April 2022

GW Sources

• Leading emission is due to timevarying quadrupole moment:

- favour dense, fast-moving sources ("small and dark")
 - detectors only sensitive above seismic noise floor of ~10Hz

• Ideal source: BH & NS binaries

07 April 🛿

7

CCSNe as GW Sources

CCSNe as GW Sources

Muller et al. 3D simulations, neutrino-driven explosion, 15 / 20 M_{\odot} ZAMS progenitor stars.

Ott *et al.* 3D simulation, neutrino-driven explosion, 27 M_{\odot} ZAMS progenitor star.

Yakunin *et al.* 2D simulations, neutrino-driven explosion 12 / 15 / 20 / 25 M_{\odot} ZAMS progenitors.

Scheidegger *et al.* 3D simulations, magnetohydrodynamically-driven explosion, 15 M_{\odot} ZAMS progenitors. Low to rapid rotation.

Dimmelmeier *et al.* 2D simulations, magnetohydrodynamically-driven explosion, $15 M_{\odot}$ ZAMS progenitor star. Moderate to rapid rotation.

E. Muller et al., Astron. Astrophys. 537, A63 (2012)
C. D. Ott et al., Astrophys. J. 768, 115 (2013)
K. N. Yakunin et al., Phys. Rev. D. 92 084040 (2015).
S. Scheidegger et al., Astron. Astrophys. 514, A51 (2010).
H. Dimmelmeier et al., Phys. Rev. D. 78, 064056 (2008).

Supernova Neutrinos in the Multi-messenger Era

07 April 2022

LIGO-Virgo Searches for CCSNe GWs

- No SNEWs alerts ... (yet)
- LIGO & Virgo collaborations have searched for GW signals consistent with the time and sky position of nearby CCSNe observed optically (2015-2017).

Abbott et al. Phys. Rev. D 101, 084002 (2020)

Supernova	Type	Host	Distance	t_1	t_2	Δt	OSW	Run	Active	Coincident
		Galaxy	[Mpc]	[UTC]	[UTC]	[days]	Method		Detectors	Coverage
SN 2015as	IIb	UGC 5460	19.2	2015 Nov 14.77	2015 Nov 16.23	1.47	Early	01	H1,L1	34.2%
SN 2016B	IIP	PGC 037392	19.1	2015 Dec 23.51	2015 Dec 27.55	4.03	Early	01	H1,L1	34.3%
SN 2016X	IIP	UGC 08041	15.2	2016 Jan 17.72	2016 Jan 20.56	2.86	Early	01	H1,L1	14.4%
SN 2017 eaw	IIP	NGC 6946	6.72	2017 Apr 26.56	2017 Apr 27.96	1.39	EPM	O2	H1,L1	48.8%
SN 2017gax	Ib/c	NGC 1672	19.7	2017 Aug 14.28	2017 Aug 16.15	1.66	Early	O2	H1,L1,V1	$\begin{array}{c} 61.5\% \ (\mathrm{H1L1}) \\ 60.8\% \ (\mathrm{H1L1V1}) \end{array}$

07 April 2022

Sensitivity

• No GW detections ... (yet)

07 April 2022

07 April 2022

O3 (2019-20) Public Alerts

Highest-probability <u>classifications:</u> BBH: 37 NS-BH: 5 BNS: 6 Mass gap: 4 [3-5] M_o Other: 4 Total rate: ~1/week false rate: ~1/month

Main focus is binaries but also have searches for "generic" GW bursts (including CCSNe).

Also listen for SNEWS, GCNs (GRBs).

LIGO/Virgo O3 Public Alerts Detection candidates: 56

SORT: EVENT ID (A-Z)

https://gracedb.ligo.org/superevents/public/O3/

Event ID	Possible Source (Probability)	UTC	GCN	Location	FAR	Comments
S200316bj	MassGap (>99%)	March 16, 2020 21:57:56 UTC	GCN Circulars Notices VOE		1 per 446.44 years	
S200311bg	BBH (>99%)	March 11, 2020 11:58:53 UTC	GCN Circulars Notices VOE		1 per 3.5448e+17 years	
S200308e	NSBH (83%), Terrestrial (17%)	March 8, 2020 01:19:27 UTC	GCN Circulars Notices VOE		1 per 8.757 years	RETRACTED
S200303ba	BBH (86%), Terrestrial (14%)	March 3, 2020 12:15:48 UTC	GCN Circulars Notices VOE		1 per 2.4086 years	RETRACTED
S200302c	BBH (89%), Terrestrial (11%)	March 2, 2020 01:58:11 UTC	GCN Circulars Notices VOE		1 per 3.3894 years	
S200225q	BBH (96%), Terrestrial (4%)	Feb. 25, 2020 06:04:21 UTC	GCN Circulars Notices		1 per 3.4497 years	

Supernova Neutrinos in the Multi-messenger Era

07 April 2022

Alert Latency

Time since gravitational-wave signal

What can SNEWS do for us?

Pointing accuracy:

 More precise is better: faster to scan, lower false rate. But we don't need much compared to EM telescopes.

Timing:

- O(1) s accuracy increases confidence / sensitive distance
 - rule of thumb: x2

Latency:

 Expect GW alerts on 10 s – 100 s scales. LIGO-Virgo 90% sky localization regions for sample binary merger events: 16 sq deg – 1666 sq deg. Abbott et al. 1304.0670

75:00

What can GWs tell us about CCSNe?

- GW burst detection algorithms search for excess power that is correlated between detectors.
 - No need for precise signal models.

• Recent examples:

M. L. Chan et al., Phys. Rev. D 102, 043022 (2020)
A. less et al., arXiv:2001.00279
P. Astone et al., Phys. Rev. D 98, 122002 (2018).
M. Lopez et al., Phys. Rev. D 103, 063011 (2021).

16

Example: Model Identification with Machine Learning

A. less et al., arXiv:2001.00279

- Train 1D and 2D convolutional neural networks (CNNs) with examples of CCSN GW signals, plus simulated detector noise artefacts.
- Able to distinguish models with ~90% accuracy at ~1 kpc.

07 April 2022

Concluding Remarks

- GWs could provide a valuable multi-messenger probe of CCSNe:
 - GW observatory network provides approx. all-sky coverage at some fractional duty cycle (~70-80% during observing runs)
 - GW-CCSN detection is challenging, but we should be sensitive to the entire Milky Way for most cases.
 - GW sensitivity would be improved by dedicated SNEWS-GW searches.
 - Beginning to develop methods to distinguish CCSN explosion mechanism from the GW signal.
- Full exploitation of these rare events requires coordination between the GW/EM/ ν communities
 - esp. strategies & partnerships for follow-up of candidate events
 - coordinated GW/EM/v emission models (for detection & interpretation).