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Primordial Black Holes

• Hypothetical black holes formed

before stellar formation.

• Come from extremely dense matter

fluctuations in the early Universe.

• These density perturbations are not

produced in standard slow roll

inflation.
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Production of PBHs

• Overdensities in the primordial power

spectrum

• Phase transitions (pressure variations)

• Cosmic strings

• Bubble Collisions

• Quark confinement

• Multiverse ...

[G. Dvali et. al. 2021]
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Hawking radiation

• Hawking radiation gives a lifetime to

all BHs

tev ∼ (M in
BH)3/(3M4

pl)

• Since tuniv. ∼ 13× 109 yr, PBHs with

M in
BH . 1014 g would no longer exist.

• Stable BHs will contribute to ΩDMh2

(Not the topic of this talk).

• However BHs radiate all particles,

regardless of interactions, so they

could produce non-interacting dark

matter!
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PBHs as dark matter
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Binary mergers provide hints to primordial black hole populations
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Power spectrum could be very different

[From Florian Kuhnel talk]
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A window of opportunity

• Late time injection of SM particles

disrupts Big Bang Nucleosynthesis.

• Provides strong constraints

MBH ∼ 109 g

• At the lower scale, the limit is taken

from the CMB, which constrains the

hubble scale during inflation.

• Model dependent lower limit

MBH ∼ 10−1 g
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Early matter domination is possible

• Substantial region of parameter space which allows early matter domination.
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Evaporating BHs are a tantalizing prospect

• Hawking radiation is quantum mechanics in a curved spacetime, intrinsically

interesting.

• They will have an active role in Early Universe.

• New physics between electroweak and Planck scales is well motivated, may even

be implied by Higg’s metastability (Gregory et. al. 2015).

• Black hole evaporation would provide such high scales at “late times” (still before

BBN).
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Basics of black hole evaporation

• Black hole temperature increases as MBH decreases TBH =
1

8πGMBH
.

• Evaporation goes like
dMBH

dt
= −ε(MBH)

M4
pl

M2
BH

.
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Any particles with m < Mp will be emitted

Since particle i is emitted when TBH & mi

Ni ≈
120ζ(3)

π3
gi

g?(TBH)

M2
BH

M2
pl

. Ni ≈
15ζ(3)

8π5
gi

g?(TBH)

M2
pl

m2
i
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Particle emission depends on intrinsic particle nature

d2Ni

dp dt
=

gi
2π2

σsi (MBH, µi , p)

exp [Ei (p)/TBH]− (−1)2si
p3

Ei (p)

• Absorption cross-section σ describes

possible back-scattering due to

gravitational and centrifugal

potentials.

• Oft-used geometrical optics limit

σsi (E , µ)|GO = 27πG 2M2
BH

• Define ψsi (E , µ) ≡ σsi (E , µ)

27πG 2M2
BH

.
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Remnants of PBH domination?

• Without assuming BSM particle

production, what experimental signals

are there for early pbh domination?

• Gravitational wave production

• Possible charged black hole remnants?

[Domenech et. al. 2021]

[Lehman et. al. 2019]
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Dark radiation and relativistic degrees of freedom

• All SM particles, including neutrinos are in thermal equilibrium at high

temperatures.

• Around matter-radiation equality, radiation energy density can be accounted for by

ρR ≡ ργ
[

1 +
7

8

(
Tν
Tγ

)
(NSM

eff + ∆Neff)

]
• Where ∆Neff parameterises any additional contributions.

• Which, presumably would come from dark radiation ρR = ρSM
R + ρDR

∆Neff ≡
{

8

7

(
4

11

)− 4
3

+ NSM
eff

}
ρDR

ρSM
R

,
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The graviton as a form of dark radiation

• Graviton is too weakly interacting to be in

equilibrium with the SM bath.

• Black hole evaporation will produce them.

• We see that a spin-2 particle is emitted

less that scalar or fermionic particles.

εi (MBH, a?) =
gi

2π2
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Kerr hawking radiation

• Kerr black holes (a? 6= 0) start to

preferentially emit high spin particles.

• Much more pronounced when close to

maximal a? ∼ 0.99.
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Binary formation to Kerr

• It is conceivable that primodial black holes are formed with angular momentum.

• It is even possible that a population of Schwarzschild black holes develop into a

poplation of Kerr black holes via early binary mergers.

• Expectation when this happens is 〈a?〉 ≈ 0.7

Hooper et.al. 2020

1.BH formation 3. Mergers 4. Hawking Radiation2. Binary Capture
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Current and Future CMB measurements show promise

• With upcoming improved CMB measurements, it looks like spinning pbhs can be

constrained.

• Two assumptions, pbhs dominate, evaporation is instantaneous.

[Arbey et. al 2021]
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Spin evolution

• Evaporation is dictated by the spin of the black

hole.

dMBH

dt
= −ε(MBH, a?)

M4
p

M2
BH

,

da?
dt

= −a?[γ(MBH, a?)− 2ε(MBH, a?)]
M4

p

M3
BH

,

• It has been known for decades that Kerr BHs

preferentially shed angular momentum.

• For maximally spinning BHs only around 40%

of mass has been lost when 90% of the spin

has gone.
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Motivation for FRISBHEE

• To determine the effect of approximating instantaneous evaporation, one would

need to solve the system of coupled Friedmann and Boltzmann equations.

• Our code FRISBHEE, FRIedmann Solver for Black Hole Evaporation in the Early

universe, does just that.

3H2M2
p

8π
= ρSM

R + ρDR + ρPBH ,

ρ̇SM
R + 4HρSM

R = − d logMBH

dt

∣∣∣∣
SM

ρPBH ,

ρ̇DR + 4HρDR = − d logMBH

dt

∣∣∣∣
DR

ρPBH ,

ρ̇PBH + 3HρPBH =
d logMBH

dt
ρPBH ,
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Entropy injection after a? ∼ 0
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Results assuming PBH domination

• The prospects for future

CMB probes are now less

optimistic.
• Paper A = Hooper et.al.

2020

• Paper B = Arbey et.al.

2021

• Paper C = Masina 2021
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Scan results for graviton

• With FRISBHEE we can

perform full scans.

• Can determine the effects

even when there isn’t pbh

domination.

• CMB-HD will constrain

maximally spinning BHs

below βc for very high M in.
BH.
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Other BSM: vector most interesting

• Much motivation for all sorts of new particles.

• The effect of spin evolution is most pronounced on higher spin particles.

• So we focus on dark radiation by way of vector. Fermion and scalar results are the

same for Kerr and Schwarzschild.

• Emmission is less enhanced at a? ∼ 0.99 but less supressed at a? = 0 so dilution is

less pronounced.
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Vector scan results

If there is evidence for a new light and feebly interacting vector boson, CMB-HD will

be able to probe much larger regions of parameter space than with just the

graviton.
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Dark matter from evaporating black holes
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Black Hole evaporation is a very efficient way to produce dark matter!

Pessimist’s motivation to study it:

• We have a way of producing dark

matter which doesn’t require any

interactions other than gravity.

• This would be very difficult to test.

• We use FRISBHEE to fully track the

coupled system in probably the most

precise way. arXiv:2107.00013.
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Black Hole evaporation is a very efficient way to produce dark matter!

Optimist’s motivation to study it:

• Many models predict interactions

between the SM and dark matter.

• Current and near future experiments

may even measure this interaction.

• Dark matter detection could be an

indirect probe into PBH’s in early

Universe.

• arXiv:2107.00016 is dedicated to this,

where we make use of the code

developed and now include an

interacting dark matter model.
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Any particles with mDM < Mp will be emitted

• Two separate regimes of particle production for stable particles

NDM ≈
120ζ(3)

π3
gi

g?(TBH)

M2
BH

M2
pl

. NDM ≈
15ζ(3)

8π5
gi

g?(TBH)

M2
pl

m2
DM
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FRISBHEE tracks dark matter production

ṅDM + 3HnDM = nBH ΓBH→DM(MBH, a?)
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Dark Matter from only PBH evaporation

• We calculate ΩDMh2 for different particle spins.

• Effects of spinning BHs (a? 6= 0).
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Dark matter distribution

• The dark matter phase space

distribution is calculated by

fDM =
nBH (tin)

gDM

(
a(tin)

a(t)

)3 1

p2
dNDM

dp

∣∣∣∣∣
t=tev

• Where the redshifting of emitted

particles is accounted for in

dNDM

dp
=

∫ τ

0
dt ′

a(τ)

a(t ′)
×d2NDM

dp′dt ′

(
p
a(τ)

a(t ′)
, t ′
)
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Lyman-α constraints on dark matter

• Lyman-α forest traces inhomogeneities

in IGM.

• Provides measurements on the matter

power spectrum at high redshift

(2 ≤ z ≤ 5 ) and small scales

(0.5 h/Mpc ≤ k ≤ 20 h/Mpc).

• Measurements down to this scale are

consistent with cold dark matter

Pχ(k) = PCDM(k)T 2
χ(k)
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Consistent η relation

• To determine the constraint, can use

T (k) = (1 + (αk)2µ)−5/µ

• Find the M in
BH value that

α = 1.3× 10−2Mpc h−1.

• For a given dark matter spin,

constraint is independent of the dark

matter mass itself.

β′ ≤ η
(

Mpl

M in
BH

)
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Warm dark matter constraints different spins

• How the constraint depends on

particle spin and BH spin (a?) is

non-trivial.

• The increased a? comes with a greater

momentum in the distribution fDM.

• At the same time the β′ values

required to produce the correct Ω

alters.

• In the end the particle type most

sensitive to a? is spin-2 dark matter. 0.0 0.2 0.4 0.6 0.8 1.0
a

10 3

10 2

Scalar
Fermion
Vector
Tensor
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Effect of extended dark sectors

• Multiple particles are predicted in many BSM models, with dark matter being the

lightest one.

• Consider one extra particle and fermionic DM, X → 2DM.
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Interplay between interacting dark matter and pbh production
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Interplay between interacting dark matter and pbh production

• The set of Boltzmann equations are now

expanded

ṅDM+3HnDM = gDM

∫
C [fDM]

d3p

(2π)3
+
dnDM

dt

∣∣∣∣
BH

ṅX + 3HnX = gX

∫
C [fX ]

d3p

(2π)3
+

dnX
dt

∣∣∣∣
BH

ρ̇SM + 4HρSM =
dM

dt

∣∣∣∣
SM

• In this work we make use of the momentum

averaged Boltzmann equation.
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Freeze-In Dark Matter with PBHs

We considered a vector-mediated,

fermionic dark matter model

ψ

ψ̄

f

f̄

X

ψ

ψ̄

X

X

and systematically explore the parameter

space

Here mDM = 1 MeV and mX = 1 TeV
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Freeze-In Dark Matter with PBHs

• The way PBHs reheat the thermal

plasma depends on a?.

• This can mean that T univ. ∼ mX for

longer.

• On this resonance is when more DM

particles are produced through

standard freeze-in.
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Current work: Distributions of PBHs

• All work above has been monochromatic in MPBH and a?

KCL TPPC Sep 2022 Andrew Cheek 42



Current work: treating rethermalization

• In the derivation of the momentum averaged Boltzmann equations, only one

explicit use of the phase space distribution from evaporated particles is made.

ΓX

〈
mX

EX

〉
ev

≡ ΓX

∫
mX

EX
fev(pX )

d3pX
(2π)3

• Where we determine the boosting effect on the lifetime of X .

• However, it’s possible that the evaporated particles can self interact or interact

with the plasma such that rethermalization occurs and one would have to calculate

〈σ · v〉T1T2 =

∫
σ · vf1f2d3~p1d3~p2[∫
d3~p1f1

] [∫
d3~p2f2

]
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Current work: sub-dominant pbh dark matter

• Warm dark matter constraints are for when PBH produces all Ω

• Working on the mixed scenerio, important if dark matter is detected elsewhere.
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Conclusions

• PBHs could have been a big player in the Early Universe.

• If heavy BSM particles exist, evaporating BHs will produce them.

• One way to exclude PBHs is through measuring ∆Neff .

• FRISBHEE calculates this in the most accurate way.

• PBHs are efficient for producing non-interacting dark matter.

• Future detection of dark matter would have implications for the fairly

unconstrained region of MPBH ∼ [10−1, 109] g.
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