ASTROCENT

Primordial Black Hole Evaporation and Dark Matter Production

KCL TPPC Seminar

Andrew Cheek, L. Heurtier, Y. F. Perez-Gonzalez, J. Turner Based on: arXiv:2207.09462, arXiv:2107.00013 and arXiv:2107.00016 Last two in PRD as "Editors suggestion" September 21, 2022

- Hypothetical black holes formed before stellar formation.
- Come from extremely dense matter fluctuations in the early Universe.
- These density perturbations are not produced in standard slow roll inflation.

- Overdensities in the primordial power spectrum
- Phase transitions (pressure variations)
- Cosmic strings
- Bubble Collisions
- Quark confinement
- Multiverse ...

Hawking radiation

• Hawking radiation gives a lifetime to all BHs

 $t_{\mathrm{ev}} \sim (M_{\mathrm{BH}}^{\mathrm{in}})^3/(3M_{\mathrm{pl}}^4)$

- Since $t_{\rm univ.} \sim 13 \times 10^9 \, {\rm yr}$, PBHs with $M_{\rm BH}^{\rm in} \lesssim 10^{14} \, {\rm g}$ would no longer exist.
- Stable BHs will contribute to $\Omega_{\rm DM} h^2$ (Not the topic of this talk).
- However BHs radiate all particles, regardless of interactions, so they could produce non-interacting dark matter!

KCL TPPC Sep 2022

PBHs as dark matter

KCL TPPC Sep 2022

Binary mergers provide hints to primordial black hole populations

KCL TPPC Sep 2022

Power spectrum could be very different

KCL TPPC Sep 2022

- Late time injection of SM particles disrupts Big Bang Nucleosynthesis.
- Provides strong constraints $M_{
 m BH} \sim 10^9 \ {
 m g}$
- At the lower scale, the limit is taken from the CMB, which constrains the hubble scale during inflation.
- Model dependent lower limit $M_{\rm BH} \sim 10^{-1}\,{\rm g}$

Early matter domination is possible

• Substantial region of parameter space which allows early matter domination.

- Hawking radiation is quantum mechanics in a curved spacetime, intrinsically interesting.
- They will have an active role in Early Universe.
- New physics between electroweak and Planck scales is well motivated, may even be implied by Higg's metastability (Gregory et. al. 2015).
- Black hole evaporation would provide such high scales at "late times" (still before BBN).

Basics of black hole evaporation

• Black hole temperature increases as $M_{\rm BH}$ decreases $T_{\rm BH} = \frac{1}{8\pi G M_{\rm BH}}$.

• Evaporation goes like
$$rac{\mathrm{d} M_{
m BH}}{\mathrm{d} t} = -arepsilon(M_{
m BH}) rac{M_{
m pl}^4}{M_{
m BH}^2}.$$

KCL TPPC Sep 2022

.

Any particles with $m < M_p$ will be emitted

Since particle *i* is emitted when $T_{\rm BH} \gtrsim m_i$

$$\frac{\mathrm{d}^2 \mathcal{N}_i}{\mathrm{d}p \,\mathrm{d}t} = \frac{g_i}{2\pi^2} \frac{\sigma_{s_i}(M_{\mathrm{BH}}, \mu_i, p)}{\exp\left[E_i(p)/T_{\mathrm{BH}}\right] - (-1)^{2s_i}} \frac{p^3}{E_i(p)}$$

- Absorption cross-section σ describes possible back-scattering due to gravitational and centrifugal potentials.
- Oft-used geometrical optics limit $\sigma_{s_i}(E,\mu)|_{\text{GO}} = 27\pi G^2 M_{\text{BH}}^2$ • Define $\psi_{s_i}(E,\mu) \equiv \frac{\sigma_{s_i}(E,\mu)}{27\pi G^2 M_{\text{BH}}^2}$.

Remnants of PBH domination?

- Without assuming BSM particle production, what experimental signals are there for early pbh domination?
- Gravitational wave production
- Possible charged black hole remnants?

Dark radiation and relativistic degrees of freedom

- All SM particles, including neutrinos are in thermal equilibrium at high temperatures.
- Around matter-radiation equality, radiation energy density can be accounted for by

$$ho_{
m R} \equiv
ho_{\gamma} \left[1 + rac{7}{8} \left(rac{T_{
u}}{T_{\gamma}}
ight) (N_{
m eff}^{
m SM} + \Delta N_{
m eff})
ight]$$

- Where $\Delta N_{
 m eff}$ parameterises any additional contributions.
- Which, presumably would come from dark radiation $ho_{
 m R}=
 ho_{
 m R}^{
 m SM}+
 ho_{
 m DR}$

$$\Delta \textit{N}_{\rm eff} \equiv \left\{ \frac{8}{7} \left(\frac{4}{11} \right)^{-\frac{4}{3}} + \textit{N}_{\rm eff}^{\rm SM} \right\} \frac{\rho_{\rm DR}}{\rho_{\rm R}^{\rm SM}} \, , \label{eq:delta_field}$$

KCL TPPC Sep 2022

- Graviton is too weakly interacting to be in equilibrium with the SM bath.
- Black hole evaporation will produce them.
- We see that a spin-2 particle is emitted less that scalar or fermionic particles.

$$\varepsilon_i(M_{\rm BH}, a_\star) = \frac{g_i}{2\pi^2} \int_0^\infty \sum_{l=s_i} \sum_{m=-l}^l \frac{\mathrm{d}^2 \mathcal{N}_{ilm}}{\mathrm{d}p \mathrm{d}t} \, E \mathrm{d}E$$

- Kerr black holes (a_⋆ ≠ 0) start to preferentially emit high spin particles.
- Much more pronounced when close to maximal a_{*} ~ 0.99.

Binary formation to Kerr

- It is conceivable that primodial black holes are formed with angular momentum.
- It is even possible that a population of Schwarzschild black holes develop into a poplation of Kerr black holes via early binary mergers.
- Expectation when this happens is $\langle a_{\star}
 angle pprox 0.7$

Current and Future CMB measurements show promise

- With upcoming improved CMB measurements, it looks like spinning pbhs can be constrained.
- Two assumptions, pbhs dominate, evaporation is instantaneous.

[Arbey et. al 2021] Andrew Cheek

Spin evolution

• Evaporation is dictated by the spin of the black hole.

$$\begin{split} \frac{\mathrm{d}M_{\mathrm{BH}}}{\mathrm{d}t} &= -\epsilon(M_{\mathrm{BH}}, a_{\star}) \frac{M_{p}^{4}}{M_{\mathrm{BH}}^{2}} \,, \\ \frac{\mathrm{d}a_{\star}}{\mathrm{d}t} &= -a_{\star}[\gamma(M_{\mathrm{BH}}, a_{\star}) - 2\epsilon(M_{\mathrm{BH}}, a_{\star})] \frac{M_{p}^{4}}{M_{\mathrm{BH}}^{3}} \,, \end{split}$$

- It has been known for decades that Kerr BHs preferentially shed angular momentum.
- For maximally spinning BHs only around 40% of mass has been lost when 90% of the spin has gone.

- To determine the effect of approximating instantaneous evaporation, one would need to solve the system of coupled Friedmann and Boltzmann equations.
- Our code FRISBHEE, FRIedmann Solver for Black Hole Evaporation in the Early universe, does just that.

$$\begin{split} \frac{3H^2M_p^2}{8\pi} &= \rho_{\rm R}^{\rm SM} + \rho_{\rm DR} + \rho_{\rm PBH} \,, \qquad \dot{\rho}_{\rm DR} + 4H\rho_{\rm DR} = - \left. \frac{\mathrm{d}\log M_{\rm BH}}{\mathrm{d}t} \right|_{\rm DR} \rho_{\rm PBH} \,, \\ \dot{\rho}_{\rm R}^{\rm SM} &+ 4H\rho_{\rm R}^{\rm SM} = - \left. \frac{\mathrm{d}\log M_{\rm BH}}{\mathrm{d}t} \right|_{\rm SM} \rho_{\rm PBH} \,, \qquad \dot{\rho}_{\rm PBH} + 3H\rho_{\rm PBH} = \frac{\mathrm{d}\log M_{\rm BH}}{\mathrm{d}t} \rho_{\rm PBH} \,, \end{split}$$

Entropy injection after $a_{\star} \sim 0$

Results assuming PBH domination

- The prospects for future CMB probes are now less optimistic.
- Paper A = Hooper et.al. 2020
- Paper B = Arbey et.al. 2021
- Paper C = Masina 2021

Scan results for graviton

- With FRISBHEE we can perform full scans.
- Can determine the effects even when there isn't pbh domination.
- CMB-HD will constrain maximally spinning BHs below β_c for very high $M_{\rm BH}^{\rm in.}$

- Much motivation for all sorts of new particles.
- The effect of spin evolution is most pronounced on higher spin particles.
- So we focus on dark radiation by way of vector. Fermion and scalar results are the same for Kerr and Schwarzschild.
- Emmission is less enhanced at a_{*} ~ 0.99 but less supressed at a_{*} = 0 so dilution is less pronounced.

If there is evidence for a new light and feebly interacting vector boson, CMB-HD will be able to probe much larger regions of parameter space than with just the graviton.

Dark matter from evaporating black holes

Pessimist's motivation to study it:

- We have a way of producing dark matter which doesn't require any interactions other than gravity.
- This would be very difficult to test.
- We use FRISBHEE to fully track the coupled system in probably the most precise way. arXiv:2107.00013.

Optimist's motivation to study it:

- Many models predict interactions between the SM and dark matter.
- Current and near future experiments may even measure this interaction.
- Dark matter detection could be an indirect probe into PBH's in early Universe.
- arXiv:2107.00016 is dedicated to this, where we make use of the code developed and now include an interacting dark matter model.

Any particles with $m_{\rm DM} < M_{\rm p}$ will be emitted

• Two separate regimes of particle production for stable particles

$\dot{n}_{\mathrm{DM}} + 3Hn_{\mathrm{DM}} = n_{\mathrm{BH}} \Gamma_{\mathrm{BH} ightarrow \mathrm{DM}}(M_{\mathrm{BH}}, a_{\star})$

Dark Matter from only PBH evaporation

- We calculate $\Omega_{\rm DM} h^2$ for different particle spins.
- Effects of spinning BHs ($a_{\star} \neq 0$).

KCL TPPC Sep 2022

• The dark matter phase space distribution is calculated by

$$f_{\mathrm{DM}} = \left. rac{n_{\mathrm{BH}}\left(t_{\mathrm{in}}
ight)}{g_{\mathrm{DM}}} \left(rac{a(t_{\mathrm{in}})}{a(t)}
ight)^3 rac{1}{p^2} rac{\mathrm{d}\mathcal{N}_{\mathrm{DM}}}{\mathrm{d}p}
ight|_{t=t_{\mathrm{ev}}}$$

• Where the redshifting of emitted particles is accounted for in

$$10^{-1}$$

 10^{-2}
 10^{-2}
 10^{-3}
 10^{-3}
 10^{-3}
 10^{-1}
 10^{-1}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 10^{-2}
 $10^{$

$$\frac{\mathrm{d}\mathcal{N}_{\mathrm{DM}}}{\mathrm{d}\boldsymbol{p}} = \int_{0}^{\tau} \mathrm{d}t' \frac{\boldsymbol{a}(\tau)}{\boldsymbol{a}(t')} \times \frac{\mathrm{d}^{2}\mathcal{N}_{\mathrm{DM}}}{\mathrm{d}\boldsymbol{p}'\mathrm{d}t'} \left(\boldsymbol{p}\frac{\boldsymbol{a}(\tau)}{\boldsymbol{a}(t')}, t'\right)$$

Lyman- α constraints on dark matter

- Lyman- α forest traces inhomogeneities in IGM.
- Provides measurements on the matter power spectrum at high redshift
 (2 ≤ z ≤ 5) and small scales
 (0.5 h/Mpc ≤ k ≤ 20 h/Mpc).
- Measurements down to this scale are consistent with cold dark matter

$$P_{\chi}(k) = P_{ ext{CDM}}(k) T_{\chi}^2(k)$$

Consistent η relation

• To determine the constraint, can use

$$T(k) = (1 + (\alpha k)^{2\mu})^{-5/\mu}$$

- Find the $M_{
 m BH}^{
 m in}$ value that $lpha=1.3 imes10^{-2}\,{
 m Mpc}\,h^{-1}.$
- For a given dark matter spin, constraint is independent of the dark matter mass itself.

$$\beta' \leq \eta \left(\frac{M_{\rm pl}}{M_{\rm BH}^{\rm in}}\right)$$

Warm dark matter constraints different spins

- How the constraint depends on particle spin and BH spin (a_{*}) is non-trivial.
- The increased *a*^{*} comes with a greater momentum in the distribution *f*_{DM}.
- At the same time the β' values required to produce the correct Ω alters.
- In the end the particle type most sensitive to a_{*} is spin-2 dark matter.

Effect of extended dark sectors

- Multiple particles are predicted in many BSM models, with dark matter being the lightest one.
- Consider one extra particle and fermionic DM, $X \rightarrow 2$ DM.

Interplay between interacting dark matter and pbh production

• The set of Boltzmann equations are now expanded

$$\dot{n}_{\mathrm{DM}} + 3Hn_{\mathrm{DM}} = g_{\mathrm{DM}} \int C[f_{\mathrm{DM}}] \frac{\mathrm{d}^3 p}{(2\pi)^3} + \frac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}t} \bigg|_{\mathrm{BH}}$$

$$\begin{split} \dot{n}_X + 3Hn_X &= g_X \int C[f_X] \frac{\mathrm{d}^3 p}{(2\pi)^3} + \left. \frac{\mathrm{d}n_X}{\mathrm{d}t} \right|_{\mathrm{BH}} \\ \dot{\rho}_{\mathrm{SM}} + 4H\rho_{\mathrm{SM}} &= \left. \frac{\mathrm{d}M}{\mathrm{d}t} \right|_{\mathrm{SM}} \end{split}$$

• In this work we make use of the momentum averaged Boltzmann equation.

We considered a vector-mediated, fermionic dark matter model

and systematically explore the parameter space

Here $m_{\rm DM}=1$ MeV and $m_X=1$ TeV

- The way PBHs reheat the thermal plasma depends on *a**.
- This can mean that ${\cal T}^{{
 m univ.}}\sim m_X$ for longer.
- On this resonance is when more DM particles are produced through standard freeze-in.

Current work: Distributions of PBHs

• All work above has been monochromatic in $M_{
m PBH}$ and a_{\star}

Andrew Cheek

Current work: treating rethermalization

• In the derivation of the momentum averaged Boltzmann equations, only one explicit use of the phase space distribution from evaporated particles is made.

$$\Gamma_X \left\langle \frac{m_X}{E_X} \right\rangle_{\rm ev} \equiv \Gamma_X \int \frac{m_X}{E_X} f_{\rm ev}(p_X) \frac{{\rm d}^3 p_X}{(2\pi)^3}$$

- Where we determine the boosting effect on the lifetime of *X*.
- However, it's possible that the evaporated particles can self interact or interact with the plasma such that rethermalization occurs and one would have to calculate

$$\langle \sigma \cdot \mathbf{v} \rangle_{\mathcal{T}_1 \mathcal{T}_2} = \frac{\int \sigma \cdot \mathbf{v} f_1 f_2 \mathrm{d}^3 \vec{p}_1 \mathrm{d}^3 \vec{p}_2}{\left[\int \mathrm{d}^3 \vec{p}_1 f_1 \right] \left[\int \mathrm{d}^3 \vec{p}_2 f_2 \right]}$$

Current work: sub-dominant pbh dark matter

- $\bullet\,$ Warm dark matter constraints are for when PBH produces all Ω
- Working on the mixed scenerio, important if dark matter is detected elsewhere.

- PBHs could have been a big player in the Early Universe.
- If heavy BSM particles exist, evaporating BHs will produce them.
- One way to exclude PBHs is through measuring $\Delta N_{\rm eff}$.
- FRISBHEE calculates this in the most accurate way.
- PBHs are efficient for producing non-interacting dark matter.
- Future detection of dark matter would have implications for the fairly unconstrained region of $M_{\rm PBH} \sim [10^{-1}, 10^9] \, {\rm g}.$