

Solitons and **Primordial black holes** from a cosmic phase transition

Ke-Pan Xie

Beihang University

2022.10.19 @King's College London (online)

2008.04430 (PRD), 2106.00111 (PLB) and 2201.07243 (PRD); With Sunghoon Jung, Jeong-Pyong Hong, Kiyoharu Kawana and Peisi Huang

Global picture

Global picture

Global picture

Solitons (solitary waves)

First discovered by John Scott Russell at 1834

Solitons (solitary waves)

First discovered by John Scott Russell at 1834

... preserving its original figure ... after a chase of one or two miles I lost it in the windings of the channel...

Solitons (solitary waves)

First discovered by John Scott Russell at 1834

... preserving its original figure ... after a chase of one or two miles I lost it in the windings of the channel...

1895 Diederik Korteweg & Gustav de Vries u(x,t)KdV equation

Solitons exist everywhere!

A conventional definition (Drazin & Johnson, 1989):

- 1. Of permanent form;
- 2. Localized within a region;
- 3. Can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

Solitons exist everywhere!

A conventional definition (Drazin & Johnson, 1989):

- 1. Of permanent form;
- 2. Localized within a region;
- 3. Can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

Ke-Pan Xie, Beihang University

Topological solitons (defects) in cosmology

Domain walls: spontaneous breaking of discrete symmetries

A Z_2 example:

Cosmic strings: spontaneous breaking of continuous symmetries

Ke-Pan Xie, Beihang University

Non-topological solitons in cosmology

Stabilized by a conserved charge Q via Noether theorem Most famous example: Q-balls^[NPB 262 (1985) 263]

How to form Q-balls?

Nontrivial: formation of Q-balls^[PLB 418 (1998) 46-54, PLB 425 (1998) 309-321]

First studied by T. D. Lee. [PRD.15.1694, PRD.16.1096]

Fermion-field nontopological solitons*

R. Friedberg Barnard College and Columbia University, New York, New York 10027

> T. D. Lee Columbia University, New York, New York 10027 (Received 8 December 1976)

First studied by T. D. Lee. [PRD.15.1694, PRD.16.1096]

Fermion-field nontopological solitons*

R. Friedberg Barnard College and Columbia University, New York, New York 10027

> T. D. Lee Columbia University, New York, New York 10027 (Received 8 December 1976)

First studied by T. D. Lee. [PRD.15.1694, PRD.16.1096]

Fermion-field nontopological solitons*

R. Friedberg Barnard College and Columbia University, New York, New York 10027

> T. D. Lee Columbia University, New York, New York 10027 (Received 8 December 1976)

With a scalar field, fermions can be collected to form a soliton!

Theorem 1. There exists a critical value N_s . For $N > N_s$, the lowest-energy state is a soliton, not the plane-wave solution. Furthermore, as $N \rightarrow \infty$,

$$E \leq \frac{4}{3}\pi\sqrt{2} N^{3/4} [U(-m/g)]^{1/4}.$$

(2.1)

First studied by T. D. Lee. [PRD.15.1694, PRD.16.1096]

Fermion-field nontopological solitons*

R. Friedberg Barnard College and Columbia University, New York, New York 10027

> T. D. Lee Columbia University, New York, New York 10027 (Received 8 December 1976)

With a scalar field, fermions can be collected to form a soliton!

Theorem 1. There exists a critical value N_s . For $N > N_s$, the lowest-energy state is a soliton, not the plane-wave solution. Furthermore, as $N \rightarrow \infty$,

$$E \leq \frac{4}{3} \pi \sqrt{2} N^{3/4} [U(-m/g)]^{1/4}.$$

(2.1)

- Macroscopic dark matter;
- Soliton stars;
- Hadron states;

How to form fermion-type solitons?

Fermion Field Nontopological Solitons. 1.				
R. Friedberg (Barnard Coll. and Columbia U.), T.D. Lee (Columbia U.) (Dec, 1976)				
Published in: <i>Phys.Rev.D</i> 15 (1977) 1694				
ି DOI	[→ cite	🗟 claim	🗟 reference search 🗧) 460 citations

How to form fermion-type solitons?

How to form fermion-type solitons?

The simplest Lagrangian for the mechanism

The simplest Lagrangian for the mechanism

The simplest Lagrangian for the mechanism

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - U(\phi) + \bar{\chi} i \gamma^{\mu} \partial_{\mu} \chi - y_{\chi} \phi \bar{\chi} \chi$ Potential for phase transition
The interaction between bubble and fermion!

The simplest Lagrangian for the mechanism

Calculation of the trapping fraction

A simplified calculation: [Chway et al, PRD 101 (2020) 9, 095019]

For a more detailed calculation see Ref. [Baker et al, PRL 125 (2020) 15, 151102]

Fermions annihilate with antifermions

To have a nontrivial result, $N(fermion) \neq N(antifermion)$

Fermions annihilate with antifermions

To have a nontrivial result, *N*(fermion) ≠ *N*(antifermion)

1. Thermal fluctuation; [Asadi et al, PRL 127 (2021) 21, 211101]

Fermions annihilate with antifermions

To have a nontrivial result, *N*(fermion) ≠ *N*(antifermion)

- 1. Thermal fluctuation; [Asadi et al, PRL 127 (2021) 21, 211101]
- 2. A baryogenesis-like asymmetry; [Shelton et al, PRD 82 (2010) 123512]

Fermions annihilate with antifermions

To have a nontrivial result, *N*(fermion) ≠ *N*(antifermion)

- 1. Thermal fluctuation; [Asadi et al, PRL 127 (2021) 21, 211101]
- 2. A baryogenesis-like asymmetry; [Shelton et al, PRD 82 (2010) 123512]

Ke-Pan Xie, Beihang University

The trapped fermions

Ke-Pan Xie, Beihang University

Ke-Pan Xie, Beihang University

Ke-Pan Xie, Beihang University

How many fermions survive?

Charge $Q_{\text{FB}} = F_{\chi}^{\text{trap}} \eta_{\chi} s_* V_* \leftarrow \overset{\text{Volume of the remnant:}}{\text{crucial information!}}$

$$M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4},$$

$$R_{\rm FB} = Q_{\rm FB}^{1/3} \left[\frac{3}{16} \left(\frac{3}{2\pi} \right)^{2/3} \frac{1}{U_0} \right]^{1/4}$$

 \Im

60

۲

-

64

How many fermions survive?

A detailed treatment see Ref. [P.Lu, K.Kawana and KPX, PRD 105 (2022) 12, 123503]

How many fermions survive?

A detailed treatment see Ref. ^[P.Lu, K.Kawana and KPX, PRD 105 (2022) 12, 123503] This talk just estimates

How many fermions survive?

A detailed treatment see Ref. ^[P.Lu, K.Kawana and KPX, PRD 105 (2022) 12, 123503] This talk just estimates

The phase transition rate

The decay rate of vacuum per unit volume^[Linde, NPB1983]

$$\Gamma(T) \sim T^4 \exp\left\{-S_3(T)/T\right\}$$

Classical action [model-dependent]

The phase transition rate

The fraction of false vacuum in the Universe^[Guth et al PRD1981]

The Fermi-ball profile

$$M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4}, \quad R_{\rm FB} = Q_{\rm FB}^{1/3} \left[\frac{3}{16} \left(\frac{3}{2\pi} \right)^{2/3} \frac{1}{U_0} \right]^{1/4}$$

The Fermi-ball profile

$$M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4}, \quad R_{\rm FB} = Q_{\rm FB}^{1/3} \left[\frac{3}{16} \left(\frac{3}{2\pi} \right)^{2/3} \frac{1}{U_0} \right]^{1/4}$$

The stability conditions

The Fermi-ball profile

$$M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4}, \quad R_{\rm FB} = Q_{\rm FB}^{1/3} \left[\frac{3}{16} \left(\frac{3}{2\pi} \right)^{2/3} \frac{1}{U_0} \right]^{1/4}$$

The stability conditions

Very dense object

$$\frac{M_{\rm FB}}{4\pi R_{\rm FB}^3/3} = 9.15 \times 10^{28} \ {\rm kg/m^3} \left(\frac{U_0^{1/4}}{100 \ {\rm GeV}}\right)^4$$

Even denser than a neutron star $\rho_{\rm NS} \approx 10^{17} \, \rm kg/m^3$

The Fermi-ball profile estimation

The first-order phase transition (FOPT) parameters

- α : FOPT latent heat over the radiation energy density;
- *B/H*: inverse ratio of FOPT duration to the Hubble time scale

$$\begin{aligned} Q_{\rm FB} &\approx 1.0 \times 10^{42} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}}\right) \times \left(\frac{100}{g_*}\right)^{1/2} \left(\frac{100 \text{ GeV}}{T_*}\right)^3 \left(\frac{100}{\beta/H}\right)^3, \\ R_{\rm FB} &\approx 4.8 \times 10^{-3} \text{ cm} \times v_b \left(\frac{\eta_{\chi}}{10^{-3}}\right)^{1/3} \times \left(\frac{100}{g_*}\right)^{5/12} \left(\frac{100 \text{ GeV}}{T_*}\right)^2 \left(\frac{100}{\beta/H}\right) \alpha^{-1/4}, \\ M_{\rm FB} &\approx 1.4 \times 10^{21} \text{ g} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}}\right) \times \left(\frac{100}{g_*}\right)^{1/4} \left(\frac{100 \text{ GeV}}{T_*}\right)^2 \left(\frac{100}{\beta/H}\right)^3 \alpha^{1/4}, \end{aligned}$$

The Fermi-ball profile estimation

The first-order phase transition (FOPT) parameters

- α : FOPT latent heat over the radiation energy density;
- *B/H*: inverse ratio of FOPT duration to the Hubble time scale

$$\begin{aligned} Q_{\rm FB} &\approx 1.0 \times 10^{42} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}}\right) \times \left(\frac{100}{g_*}\right)^{1/2} \left(\frac{100 \text{ GeV}}{T_*}\right)^3 \left(\frac{100}{\beta/H}\right)^3, \\ R_{\rm FB} &\approx 4.8 \times 10^{-3} \text{ cm} \times v_b \left(\frac{\eta_{\chi}}{10^{-3}}\right)^{1/3} \times \left(\frac{100}{g_*}\right)^{5/12} \left(\frac{100 \text{ GeV}}{T_*}\right)^2 \left(\frac{100}{\beta/H}\right) \alpha^{-1/4}, \\ M_{\rm FB} &\approx 1.4 \times 10^{21} \text{ g} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}}\right) \times \left(\frac{100}{g_*}\right)^{1/4} \left(\frac{100 \text{ GeV}}{T_*}\right)^2 \left(\frac{100}{\beta/H}\right)^3 \alpha^{1/4}, \end{aligned}$$

Fermi-balls^[Hong, Jung and KPX, Phys.Rev.D 102 (2020) 7, 075028, arXiv:2008.04430]

[Marfatia et al, JHEP 11 (2021) 068]

[Marfatia et al, JHEP 11 (2021) 068]

[Marfatia et al, JHEP 11 (2021) 068]

[Marfatia et al, JHEP 11 (2021) 068]

Outline

"Normal "black holes

From the collapse of stars running out of fuel

Primordial black holes (PBHs)

Hypothetical black holes (soon after Big Bang); [Zel'dovitch et al, 1966]

Primordial black holes (PBHs)

Mass lies in a vast region, depending on the formation mechanism.

Primordial black holes (PBHs)

Mass lies in a vast region, depending on the formation mechanism.

What can PBHs do?

A natural **dark matter** candidate;

Seeds of the supermassive black holes;

Explaining LIGO/Virgo observations;

Origin of the matter-antimatter asymmetry;

To Be Continued

Formation of the primordial black holes

Collapse of the overdense region during inflation; [Carr et al, MNRAS1974]

Scalar field fragmentation; ^[Cotner et al, PRL 119 (2017) 3, 031103] Directly from a FOPT; ^[Hawking et al, Phys.Rev.D 26 (1982) 2681; Baker et al, 2105.07481]

Collapse from the topological defects (e.g. cosmic strings, domain walls);^[Hawking, PLB 231 (1989) 237-239]

Collapse from fermion non-topological solitons [this talk].

.

Recall the Fermi-ball scenario

The Fermi-balls:

- 1. Non-topological solitons;
- 2. Dark matter candidate.

Is that the whole story?

We have missed the Yukawa force!

Yukawa force *inside* a Fermi-ball

Originated from $\mathcal{L} \supset -y_{\chi}\phi \bar{\chi}\chi$

We have missed the Yukawa force!

Yukawa force *inside* a Fermi-ball

Originated from $\mathcal{L} \supset -y_{\chi}\phi \bar{\chi}\chi$

The modified energy profile

Calculating the Yukawa energy

<u>A very simplified model</u>: uniform distribution of the χ -fermions

Calculating the Yukawa energy

<u>A very simplified model</u>: uniform distribution of the χ -fermions

Calculating the Yukawa energy

<u>A very simplified model</u>: uniform distribution of the χ -fermions

- 1. Always negative (attractive force);
- 2. Vanishes if mediator scalar is heavy;

Recall the Fermi-ball profile

What if the Yukawa energy dominates?

Recall the Fermi-ball profile

What if the Yukawa energy dominates?

Recall the Fermi-ball profile

What if the Yukawa energy dominates?

Range of force reaches the <u>mean separation</u> of fermions in the Fermi-ball: collapse!

Evolution of range of force

The range of force increases as *T* drops!

Evolution of range of force

The range of force increases as T drops!

Wait, can a Fermi-ball cool down?

Emitting SM light particles (black body radiation^[Witten, PRD1984]);

Radiation cooling is very efficient! $\tau_{\rm cool} \ll 1/H$

Wait, can a Fermi-ball cool down?

Emitting SM light particles (black body radiation^[Witten, PRD1984]);

Radiation cooling is very efficient! $au_{
m cool} \ll 1/H$

Scattering cooling:^[Kawana, Lu and KPX, JCAP 10 (2022) 030, arXiv:2206.09923]

Wait, can a Fermi-ball cool down?

Emitting SM light particles (black body radiation^[Witten, PRD1984]);

Radiation cooling is very efficient! $au_{
m cool} \ll 1/H$

Scattering cooling: [Kawana, Lu and KPX, JCAP 10 (2022) 030, arXiv:2206.09923]

In thermal bath via $\lambda_{H\phi}|H|^2\phi^2$ In short: Fermi-balls can cool down!

From Fermi-balls to primordial black holes

The Fermi-balls collapse to primordial black holes at T_{ω} when

Mass inherits from the mother Fermi-ball; number density

 $M_{\rm PBH} \approx M_{\rm FB} = Q_{\rm FB} \left(12\pi^2 U_0 \right)^{1/4} \qquad n_{\rm PBH} = s \times \frac{n_{\rm FB}^*}{s_*}$

Recall the formulae $n_{\rm FB}^* \approx 0.29 \times V_*^{-1}$ $\Gamma(T_*)V_*\Delta t \sim 1, \quad V_* = \frac{4\pi}{3}R_*^3, \quad \Delta t = \frac{R_*}{v_b}$ $\Gamma(T) \sim T^4 \exp\{-S_3(T)/T\}$

A quick estimate for the profile

The action is approximately^[Huber et al JCAP2008]

$$\frac{S_3(T_*)}{T_*} \approx 131 - 4\ln\left(\frac{T_*}{100 \text{ GeV}}\right) - 4\ln\left(\frac{\beta/H}{100}\right) + 3\ln v_b - 2\ln\left(\frac{g_*}{100}\right) ,$$
Vacuum energy

$$U_0(T_*) \approx \alpha \times \frac{\pi^2}{30}g_*T_*^4$$

A quick estimate for the profile

The action is approximately [Huber *et al* JCAP2008]
The ratio of Hubble time to phase transition duration

$$\frac{S_3(T_*)}{T_*} \approx 131 - 4 \ln \left(\frac{T_*}{100 \text{ GeV}} \right) - 4 \ln \left(\frac{\beta/H}{100} \right) + 3 \ln v_b - 2 \ln \left(\frac{g_*}{100} \right) ,$$
Vacuum energy

$$U_0(T_*) \approx \alpha \times \frac{\pi^2}{30} g_* T_*^4$$

$$Q_{\text{FB}} \approx 1.0 \times 10^{42} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}} \right) \times \left(\frac{100}{g_*} \right)^{1/2} \left(\frac{100 \text{ GeV}}{T_*} \right)^3 \left(\frac{100}{\beta/H} \right)^3 ,$$

$$R_{\text{FB}} \approx 4.8 \times 10^{-3} \text{ cm} \times v_b \left(\frac{\eta_{\chi}}{10^{-3}} \right)^{1/3} \times \left(\frac{100}{g_*} \right)^{5/12} \left(\frac{100 \text{ GeV}}{T_*} \right)^2 \left(\frac{100}{\beta/H} \right) \alpha^{-1/4} ,$$

$$M_{\text{FB}} \approx M_{\text{PBH}} \approx 1.4 \times 10^{21} \text{ g} \times v_b^3 \left(\frac{\eta_{\chi}}{10^{-3}} \right) \times \left(\frac{100}{g_*} \right)^{1/4} \left(\frac{100 \text{ GeV}}{T_*} \right)^2 \left(\frac{100}{\beta/H} \right)^3 \alpha^{1/4} ,$$

$$f_{\text{PBH}} \approx 1.3 \times 10^3 \times v_b^{-3} \left(\frac{g_*}{100} \right)^{1/2} \left(\frac{T_*}{100 \text{ GeV}} \right)^3 \times \left(\frac{\beta/H}{100} \right)^3 \left(\frac{M_{\text{PBH}}}{10^{15} \text{ g}} \right) ;$$
The DM fraction today

Need further dilution mechanism if $f_{PBH} > 1$.

Correlation between FOPT and gamma-rays

Ke-Pan Xie, Beihang University
An application of this mechanism

Primordial black holes from an first-order electroweak phase transition! [Huang and KPX, PRD 105 (2022) 11, 115033, arXiv:2201.07243]

Ke-Pan Xie, Beihang University

Conclusion

Ke-Pan Xie, Beihang University

Conclusion

Our work!

Hong, Jung and **KPX**, PRD 102 (2020) 7, 075028, arXiv:2008.04430 Kawana and **KPX**, PLB 824 (2022) 136791, arXiv:2106.00111

Ke-Pan Xie, Beihang University