Rotating black hole analogues in quantum fluids

Sam Patrick

Outline

- Analogue models
- Quantum fluids
- Draining vortex flow
- Experimental status
- Theoretical progress: vortex decay
- Moving forward

Quantum Simulators for Fundamental Physics

Black hole analogues in superfluid ⁴He & fibreoptics

University of Nottingham UK | CHINA | MALAYSIA

False vacuum decay using 2-component Bose-Einstein condensates

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

TECHNISCHE

UNIVERSITÄT

WIEN

Analogue gravity

• Use non-gravitational systems to mimic features of gravitational ones

All of nature...

Analogue system

Classical example

Classical example

Other systems

- Surface waves/sound waves in a flowing fluid
- Electromagnetic waves in fibre-optics
- Quantum fluids (Bose-Einstein condensates, superfluid ⁴He)
- Photon fluids in non-linear optics
- Exciton-polariton condensates
- Superconducting, microwave circuits with Josephson junctions
- Vibrational modes in ion traps

[Living Rev. Relativ. 14, 1 (2011), Phil. Trans. R. Soc. A 378: 20190239 (2020)]

Analogue spacetimes in Bose-Einstein condensates

• System of bosons will condense into the ground state at T = 0K

Gross-Pitaevskii equation (GPE): $i\hbar\partial_t\Psi = -\frac{\hbar^2}{2M}\nabla^2\Psi + U(\mathbf{x})\Psi + g|\Psi|^2\Psi$

Madelung representation

 $\Psi = \sqrt{n(\mathbf{x},t)} e^{rac{i}{\hbar}(M\Phi(\mathbf{x},t)-\mu t)}$ $\mathbf{v} = \nabla\Phi$ Fluid velocity

Continuity of number density $\partial_t n + \nabla \cdot (n\mathbf{v}) = 0$ Bernoulli equation + "quantum pressure" $\partial_t \Phi + \frac{1}{2}\mathbf{v}^2 + \frac{gn + U - \mu}{M} - \frac{\hbar^2}{2M^2} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} = 0$ Healing length $\xi = \frac{\hbar}{\sqrt{M\mu}}$ if $\frac{|\nabla n|}{n} \sim L^{-1} \ll \xi^{-1}$ Perturb the fluid variables

$$n \to n + \delta n, \qquad \Phi \to \Phi + \delta \phi$$
$$(\partial_t + \nabla \cdot \mathbf{v})\delta n + \nabla \cdot (n\nabla \delta \phi) = 0$$
$$(\partial_t + \mathbf{v} \cdot \nabla)\delta \phi + \frac{g}{m}\delta n = 0$$

Wave equation

Sound speed

$$(\partial_t + \nabla \cdot \mathbf{v})(\partial_t + \mathbf{v} \cdot \nabla)\delta\phi - \nabla \cdot (c^2 \nabla \delta\phi) = 0$$
 $c^2 = \frac{gn}{m}$

Klein-Gordon equation

$$\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\delta\phi) = 0$$

Effective metric

$$g_{\mu\nu} = \frac{n}{mc} \begin{pmatrix} -c^2 + \mathbf{v}^2 & -v_j \\ -v_i & \delta_{ij} \end{pmatrix}$$

	Gravity	Analogue	
Linear	$\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}\delta\phi) = 0 \longleftarrow$	$\Rightarrow (\partial_t + \nabla \cdot \mathbf{v})(\partial_t + \mathbf{v} \cdot \nabla)\delta\phi - \nabla \cdot (c^2 \nabla \delta \phi) = 0$	
Classical	$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$	$i\hbar\partial_t\Psi = -\frac{\hbar^2}{2M}\nabla^2\Psi + U(\mathbf{x})\Psi + g \Psi ^2\Psi$	
T.O.E	Quantum gravity?	$i\hbar\partial_t \psi_{\rm MB}\rangle = \hat{H} \psi_{\rm MB}\rangle$	

Draining vortex flow

Ergosphere: $||\mathbf{v}(r_e)|| = c$ Horizon: $||v_r(r_h)|| = c$

 $\xi \ll r_h$ $n \simeq \text{const}$

 $\mathbf{v} = \frac{\hbar}{M} \left(-\frac{d}{r} \hat{\mathbf{e}}_r + \frac{\ell}{r} \hat{\mathbf{e}}_\theta \right)$

 $r_h = \xi d, \quad r_e = \xi \sqrt{\ell^2 + d^2}$ $\Psi \sim e^{i\ell\theta} \therefore \quad \ell \in \mathbb{Z}$ Vortex quantisation
Angular momentum:

 $L = \hbar \ell N$

Superfluid ⁴He draining vortex

Theoretical modelling

Surface waves on a 3D helium flow \rightarrow Density waves in a 2D BEC

Superfluid ⁴He models

Landau's 2-fluid model Vortex filament model Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations

BEC models

Gross-Pitaevskii equation (GPE) Stochastic-Projected GPE (sPGPE) Zaremba-Nikuni-Griffin (ZNG) model

Drawbacks

- Assumes weak interactions
- Models a gas, not a liquid
- Model has no free surface

Benefits

- Models wave dynamics
- Contains details of vortex core
- Derivation from first principles known
- Captures superfluidity and vortex quantisation

Not so bad! Surface waves on an incompressible, shallow fluid map to density waves.

Drawbacks

• No wave dynamics

- Neglects details of the vortex core
- No known derivation from first principles

Non-draining vortex

- $\mathbf{v} = \frac{\hbar}{M} \frac{\ell}{r} \hat{\mathbf{e}}_{\theta}$ $L = \hbar \ell N \qquad n$
- Draining flow is still difficult to model
- As a first step, consider a non-draining vortex
- Rotating horizonless geometry

$$ds^{2} = \sqrt{n} \left[-\left(n - \frac{\ell^{2}}{r^{2}}\right) dt^{2} - \frac{2\ell}{r} d\theta dt + dr^{2} + r^{2} d\theta^{2} \right]$$

Units: $\hbar = M = \mu = 1$

$$(\partial_t + \nabla \cdot \mathbf{v})(\partial_t + \mathbf{v} \cdot \nabla)\delta\phi - \nabla \cdot (c^2 \nabla \delta \phi) = 0$$

+ extra terms

Superradiance with horizonless quantum vortex

$$S(\omega) \equiv \int p(r,\omega)dr = \frac{\pi}{2}$$
 $\Gamma = \frac{\log |\mathcal{R}(\omega)|}{2|\partial_{\omega}S(\omega)|}$

l	т	$\omega_{ m WKB}$	$\omega_{ m sim}$	$\Gamma_{ m WKB}$	$\Gamma_{\rm sim}$
2	2	0.3954	0.4399	2.543×10^{-3}	2.431×10^{-3}
3	2	0.2475	0.2871	1.903×10^{-3}	2.189×10^{-3}
	3	0.6613	0.6648	7.839×10^{-4}	n.a.
	4	0.2161	0.2462	2.370×10^{-7}	n.a.

Triply quantised vortex, m = 2 instability

Lessons

- Quantum vortex decay arises due to a superradiant instability inside the vortex core.
- Vortex separation is a degree of freedom which facilitates superradiance.

Superradiance with draining quantum vortex?

Vortex cluster hidden behind horizon

Summary

- Draining vortex is an analogue rotating black hole
- A quantum fluid has discrete angular momentum
- Study how scattering processes are affected
- Vortex splitting with no drain
- New interpretations of fluid phenomena

 $L = \hbar \ell N$

- Open questions: superradiance with drain? discrete atom number?
- Working toward more realistic models of ⁴He set-up

[Class. Quant. Grav. **38** 095010 (2021), Phys. Rev. Research **4** 023099 (2022), Phys. Rev. Research **4** 033117 (2022), arXiv:2111.02567]