New Developments in the Galactic Center Gamma-Ray Excess

Yi-Ming Zhong

KICP, UChicago

with Cholis, Fox, McDermott, and Surdutovich 1) PRL 124 (2020), arXiv:1911.12369 2) PRD 105 (2022), arXiv:2112.09706 3) arXiv:2209.00006

King's College London, 11/23/2022

0

Outline

- Introduction
 - The Galactic Center γ-ray Excess (GCE)
 - What is the origin of the GCE?
- Testing the small-scale power of the GCE
- Revisiting the characteristics of the GCE w/ a new set of templates
- Summary

Introduction

Evidence for dark matter

Bullet Cluster

Yi-Ming Zhong | UChicago | New Developments in GCE

Large-Scale Structure

Cosmic Microwave Background

68%

Dark Energy

Yi-Ming Zhong | UChicago | New Developments in GCE

Ordinary Matter

27%

5%

Dark Matter (DM)

Ordinary matter

Yi-Ming Zhong | UChicago | New Developments in GCE

Dark matter?

"Delve Deep, Search Wide."

Ultralight dark matter (e.g. axion, dark photon)

 $10^{-22} \text{ eV} - 1 \text{ eV}$

Yi-Ming Zhong | UChicago | New Developments in GCE

— Snowmass 2021

Weakly interacting massive particles (WIMP)

Ultraheavy dark matter (e.g. black holes)

 $10^9 \,\mathrm{eV} - 10^{13} \,\mathrm{eV}$

 $10^{50} \text{ eV} - 10^{53} \text{ eV}$

A key assumption

- us besides the gravitational influence.
- Is this true?

Yi-Ming Zhong | UChicago | New Developments in GCE

Direct searches of dark matter often assumes that dark matter interacts with

Fermi-LAT satellite and the GCE

The Fermi Large Area Telescope (Fermi-LAT)

2008-present

Yi-Ming Zhong | UChicago | New Developments in GCE

10

The Fermi Large Area Telescope (Fermi-LAT)

https://fermi.gsfc.nasa.gov/ssc/data/

Yi-Ming Zhong | UChicago | New Developments in GCE

11

Yi-Ming Zhong | UChicago | New Developments in GCE

Yi-Ming Zhong | UChicago | New Developments in GCE

The Galactic center inner x° region from *I*=*b*=0

Galactic Centre

star

Direction of South Galactic Pole

– 180°

Galactic longitude /

0°

Galactic Anti-centre The Sun

The excess

Excess of γ-ray photos,
peaked around 1– 4 GeV at
~inner 10° regions.

 Discovered by Goodenough & Hooper '09. Later confirmed by Fermi-LAT collaboration (+ many other groups).

flux N: photons per area per sec per solid angle

The GCE spectrum

fit comes from dark matter.

- First evidence for dark matter interacts with the ordinary matter.
- We could learn both dark matter mass and the interaction strength (WIMP particle).
- We could naturally explain the observed abundance of dark matter (thermal freezeout).

DM SM SM DM

mx ~10-100 GeV $\langle \sigma v \rangle \sim 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$

Daylan+ (2016)

If it comes from dark matter...

- First evidence for dark matter interacts with the ordinary matter.
- We could learn both dark matter mass and the interaction strength (WIMP particle).
- We could naturally explain the observed abundance of dark matter (thermal freezeout).

Kolb & Turner

Other explanation

- Pulsars are rapidly spinning neutron stars.
- Classified by the period.

Credit: Bill Paxton

Other explanation

- Millisecond pulsars (MSPs), pulsars w/ period ~ milliseconds, give the correct spectra of the GCE.
- A new (not-yet-observed) population of millisecond pulsars at the GC could explain the GCE.

 $4.0.10^{-1}$ 3.0.10 dE (Arb. Units) $2.0 \cdot 10^{-1}$ $1.0.10^{-1}$ dN 五² $-1.0 \cdot 10^{-6}$

Yi-Ming Zhong | UChicago | New Developments in GCE

What is the origin of the GCE?

Dark matter (WIMP) annihilation

Yi-Ming Zhong | UChicago | New Developments in GCE

Small-scale power

Morphism

What is the origin of the GCE?

Dark matter (WIMP) annihilation

Yi-Ming Zhong | UChicago | New Developments in GCE

Small-scale power

Morphism

What is the origin of the GCE?

Dark matter (WIMP) annihilation

Yi-Ming Zhong | UChicago | New Developments in GCE

Small-scale power

Morphism

The GCE status before 2019

Dark matter (WIMP) annihilation

Yi-Ming Zhong | UChicago | New Developments in GCE

Morphism

Macias+ '16, '17, Bartels+ '17, Macias+ '18, '19, Pohl+ '20

Fermi data

The GCE spectrum

Template fitting

Template fitting

Yi-Ming Zhong | UChicago | New Developments in GCE

Sum of all foregrounds & GCE templates

VS.

Templates

Yi-Ming Zhong | UChicago | New Developments in GCE

Fitting

- Do the comparison energy-bin by energy-bin
- For each energy bin, we run MCMC to get the statistics of the weights of the templates

Template fitting

Yi-Ming Zhong | UChicago | New Developments in GCE

Test GCE hypothesis

Yi-Ming Zhong | UChicago | New Developments in GCE

Testing the small-scale power of the GCE

The small-scale power

- At the small scale (resolution scale), γray emissions from MSPs is clumpy but those from WIMP is smooth.
- Important to distinguish the two origins.
- Bartels+ '16 [Wavelet] and Lee+ '16 [Non-Poisson template fitting] both found GCE is clumpy.

The small-scale power

- At the small scale (resolution scale), γray emissions from MSPs is clumpy but those from WIMP is smooth.
- Important to distinguish the two origins.
- Bartels+ '16 [Wavelet] and Lee+ '16 [Non-Poisson template fitting] both found GCE is clumpy.

Is the GCE origin settled?

New data released in 2019

 Fermi-LAT collaboration released the 4th point source catalog in early 2019. (Abdollahi+ '19) VALID 19 February - 18 March 2018

Point source: Classification Location TS Spectrum information...

A new point source catalog: 4FGL

• Fermi-LAT collaboration released the 4th point source catalog in early 2019. (Abdollahi+ '19)

Catalog	Exposure	Date releas
1FGL	1 year	2010
2FGL	2 year	2011
3FGL	4 year	2015
4FGL	8 year	2019

4FGL

- Classification, location, and spectrum information for all the point sources
- Compare to earlier catalogs:
 - More exposure
 - Lower energy flux threshold

Yi-Ming Zhong | UChicago | New Developments in GCE

More sources are identified

Yi-Ming Zhong | UChicago | New Developments in GCE

12° around the Galactic center

Given the newly released data

Is GCE still there?

Are MSPs still in favor in small-scale power analysis?

Yi-Ming Zhong | UChicago | New Developments in GCE

Is GCE still there?

4FGL & the GCE energy spectrum

- To study the GCE spectrum, the pt sources (and the Galactic disk) are usually masked out because they are difficult to model.
- Is there still a GCE after masking out 4FGL point sources?

Template fitting

Fermi data [11 years of obs.] masking 4FGL + disk

Yi-Ming Zhong | UChicago | New Developments in GCE

Templates for foregrounds Template for GCE

VS.

Templates

Yi-Ming Zhong | UChicago | New Developments in GCE

Use Model A from Calore+ '15 for the diffuse γ-ray emission

The GCE is still there

$$\rho \propto \frac{1}{\left(\frac{r}{r_s}\right) \left(1 + \frac{r}{r_s}\right)^2} \qquad \rho \propto \frac{1}{\left(\frac{r}{r_s}\right)^{1.2} \left(1 + \frac{r}{r_s}\right)^1}$$

TABLE I. Difference in $-2 \ln \lambda$ (lower numbers are better) at the best fit points of each model, summed over energy bins, compared to our best fit for each mask.

Type of Mask	NFW	gNFW	no excess	
$2 \mathrm{FGL}$	0	476	5430	Less po
4FGL	0	368	3600	⇒ Bet

Best fit

The GCE spectrum is almost unchanged

٨

The GCE spectrum is almost unchanged

Are MSPs still in favor in smallscale power analysis?

2D continuous wave et

- Decompose signal in terms of wavelets that has special scaling properties
- Effective method to decompose information to different scales
- Used in the analysis of solar astronomy, Cosmic Microwave Background, GCE, etc.
- 2D continuous wavelet \Rightarrow an effective matchfilter

Antoine+ '19, Balaji+ '18

What is a matched filter?

Laplacian operator

Testing the small-scale power w/ wavelet

2nd member of the Mexican Hat Wavelet Family (M₂)

$$\sum_{e}^{2} \frac{r^{2}}{2\sigma^{2}} \leftarrow \frac{r}{2}$$

Fermi data around the peak energy of GCE (C)

GC under wavelet

GC under wavelet

- By testing the templates, we found many of the peaks are from diffused emission foreground.
- But we found peaks with S > 4 (white colored) cannot be produced by the diffuse γ-ray emission.

GC under wavelet

- There are 117 peaks with S > 4 (marked w/ yellow cross).
- What are those peaks?

What are those peaks w/ high S? Peak

 Bartels+ '16 thought they are all millisecond pulsars.

What are those peaks with high S?

 We found most of peaks w/ S>4 are associated w/ pt sources in the 4FGL catalog (red circles).

What are those peaks with high S?

109 peaks near 4FGL

47 are unknown/ unassociated

Yi-Ming Zhong | UChicago | New Developments in GCE

117 peaks w/ S>4

VALID 19 February - 18 March 2018

Point source: Location Classification Spectrum

We have access to all of those spectra in 4FGL!

Stacked spectra of the unknown pt sources

- Bright source contribute little to the GCE
- Need large contributions from sub-detection-threshold pt sources

 $L_{sub-thr} / L_{above-thr} = 4 \pm 1$

Constraining the luminosity functions

L_{min}: cosmic ray L_{thr}: detection threshold L_{max}: cosmic ray

Constraining the luminosity functions

 $L_{min} \sim 10^{29} \text{ erg/s}$ $L_{thr} \sim 10^{34} \text{ erg/s}$ $L_{max} \sim 10^{35} \text{ erg/s}$ $\Rightarrow a_L \sim 1.96 \pm 0.04$

Constraining the luminosity function of MSPs

 The luminosity function of observed pulsars, modeled as a power-law $dN/dL \sim L^{-\alpha L}$, favors $1.2 \leq \alpha_L \leq 1.5$.

Strong '06, Cimpoeas '06, Venter+ '14, Petrovic+ '14, Cholis+ '14

We found $a_L > 1.96 \pm 0.04$ are needed to explain the GCE. A big contrast with observed pulsar populations.

Constraining the luminosity function of MSPs

- $a_L \sim 1.96 \pm 0.04 \Rightarrow$ O(million) of MSPs (w/ $L > 10^{29}$ erg/s) are needed to explain the GCE.
- MSPs are unlikely to explain the GCE.

Constraining the luminosity function of MSPs

- Dinsmore & Slatyer '21 tested luminosity functions w/ broken-power-laws. • # of MSPs varies from O(1,000) to O(100,000).
- To reach O(1,000), a peaked luminosity function located at high luminosity is needed.

Revisiting the characteristics of the GCE w/ a new set of templates

Diffuse y-ray emission are important

Modeling the diffused y-ray emission

- Two steps:
 - 1. Propagation of the cosmic ray (CR)
 - 2. γ-ray produced from the cosmic rays interacting w/ interstellar medium (ISM)
- Need to control systematic uncertainties well. Observations of CR could help.

CR observation

AMS-02

CR hydrogen (H), helium (He), carbon (C), beryllium (Be), boron (B), and oxygen (O) near earth.

Yi-Ming Zhong | UChicago | New Developments in GCE

Voyager 1

CR proton outside the Heliosphere.

New templates calibrated w/ CR data

All templates are publicly available at <u>https://zenodo.org/record/5787376</u>

Yi-Ming Zhong | UChicago | New Developments in GCE

5 calibrated CR models

80 diffuse emission templates

lemplate fitting

Fermi data [12.5 years of obs.] masking 4FGL-DR2 sources + disk [white regions]

Yi-Ming Zhong | UChicago | New Developments in GCE

VS.

New templates for the diffuse emission **Templates for isotropic & Fermi bubbles Template for GCE**

(Also masking the sources + disk)

The GCE is still there

Yi-Ming Zhong | UChicago | New Developments in GCE

66

What is new? Harder energy tail

67

available at Ready for interpretation? https://zenodo.org/record/5787376

WIMP or MSPs?

- For WIMP, we consider, e.g., $DMDM \rightarrow bb$
- For millisecond pulsars, we consider spectrum from known pulsars (Ploeg+ '18, Cholis+ '14).
- We found millisecond pulsar cannot fit the hard high-energy tail well. WIMP wins.

Less positive \Rightarrow Better fit

Model	$\widehat{\chi}^2/{ m dof}$	\hat{p} -value	ROI
	76.6/13	$< 10^{-6}$	$40^{\circ} \times 4$
MSPs	34.5/13	$1.0 imes 10^{-3}$	southern
	194.5/13	$< 10^{-6}$	northern
	50.5/12	1.1×10^{-6}	$40^{\circ} \times 4$
DM DM $\rightarrow b\bar{b}$	17.1/12	0.15	southern
	88.0/12	$< 10^{-6}$	northern

WIMP or MSPs?

- For WIMP, we consider, e.g., $DMDM \rightarrow bb$
- For millisecond pulsars, we consider spectrum from known pulsars (Ploeg+ '18, Cholis+ '14).
- We found millisecond pulsar cannot fit the hard high-energy tail well. WIMP wins.

The GCE is spherical

Prefer round shape

Acebate
Earlier results

Yi-Ming Zhong | UChicago | New Developments in GCE

 Macias+ '18, '19, and Pohl+ '20 claim the GCE is boxy instead of spherical.

Differences in the templates

 Macias+ '18, '19, and Pohl+ '20 use ring-based templates w/ a total of 19 templates.

HI ring 1, HI ring 2, HI ring 3, HI ring 4, H2 ring 1, H2 ring 2, H3 ring 3, H2 ring4, ICS ring 1, ICS ring 2, ICS ring 3, ICS ring 4, ICS ring 5, ICS ring 6, Pos Res, Neg Res, Fermi bubbles, Isotropic, GCE

Yi-Ming Zhong | UChicago | New Developments in GCE

 We use an astrophysical motivated leaky-box model w/ a total of 6 templates.

Pion0, Brems, ICS, Fermi bubbles, Isotropic, GCE

Apple-to-apple comparison

McDermott, YZ, Ilias '22

TABLE I. Comparison of results, generated in this wo of [23] to describe astrophy results utilize templates from

Fits based on Pohl+ '20's templates

Fits based on our templates

Excess Model No Excess X-Shaped Bulge Dark Matter Boxy & X-Shaped Bulges Boxy Bulge Boxy Bulge "plus" No Excess Boxy Bulge Dark Matter

models of the GCE. The first six ork, rely on the ring-based method sysical emission. The final three om [15]. More negative \Rightarrow better fit			
Bgd. Templates	$-2\Delta {\ln {\cal L}}$	$\Delta { m ln} {\cal B}$	
ring-based [23]	0	0	
ring-based [23]	+30	-190	
ring-based [23]	-237	+12	
ring-based 23	-634	+178	
ring-based 23	-724	+228	
ring-based [23]	-765	+311	
astrophysical [15]	-4539	+2933	
astrophysical $[15]$	-6398	+3814	
astrophysical [15]	-7288	+4268	

Apple-to-apple comparison

McDermott, YZ, Ilias '22

TABLE I. Comparison of r results, generated in this wo of [23] to describe astrophy results utilize templates from

Fits based on Pohl+ '20's templates

Fits based on our templates

Excess Model No Excess X-Shaped Bulge Dark Matter Boxy & X-Shaped Bulges Boxy Bulge Boxy Bulge "plus" No Excess Boxy Bulge Dark Matter

models of the GCE. The first six ork, rely on the ring-based method sysical emission. The final three m [15]. More negative \Rightarrow better fit		
Bgd. Templates	$\left -2\Delta {\ln {\cal L}} ight $	$\Delta \ln \mathcal{B}$
ring-based [23]	0	0
ring-based [23]	+30	-190
ring-based [23]	-237	+12

ring-based [23] +178-634ring-based [23] -724+228ring-based [23] -765+311astrophysical [15] -4539+2933astrophysical [15] +3814-6398+4268astrophysical [15] -7288

Our diffuse model provides a better fit if no excess

Apple-to-apple comparison

McDermott, YZ, Ilias '22

TABLE I. Comparison of r results, generated in this wo of [23] to describe astrophy results utilize templates from

Fits based on Pohl+ '20's templates

Fits based on our templates

Excess Model No Excess X-Shaped Bulge Dark Matter Boxy & X-Shaped Bulges Boxy Bulge Boxy Bulge "plus" No Excess Boxy Bulge Dark Matter

models of the GCE. The first six ork, rely on the ring-based method sysical emission. The final three om [15]. More negative \Rightarrow better fit		
Bgd. Templates	$-2\Delta { m ln} {\cal L}$	$\Delta \ln \mathcal{B}$
ring-based [23]	0	0
ring-based [23]	+30	-190
ring-based $[23]$	-237	+12
ring-based [23]	-634	+178
ring-based [23]	-724	+228
ring-based [23]	-765	+311
astrophysical [15]	-4539	+2933
astrophysical [15]	-6398	+3814
astrophysical [15]	-7288	+4268

Best fit from Pohl+ '20's templates

Best fit from our templates is better than the best fit from Pohl+ '20

Possible reason for the boxy GCE?

Yi-Ming Zhong | UChicago | New Developments in GCE

Summary

The GCE status before 2019

Dark matter (WIMP) annihilation

Yi-Ming Zhong | UChicago | New Developments in GCE

Morphism

Macias+ '16, '17, Bartels+ '17, Macias+ '18, '19, Pohl+ '20

A new population of millisecond pulsars

The GCE status at 2022

- Arguments no-longer in favor of MSPs:
 - The point sources found by wavelet methods are mostly known sources.
 - The luminosity functions of MSPs at GC need to be very different than observed MSPs.
 - The NPTF methods are template-sensitive. Leane & Slatyer '19, '20, '20, Chang+ '19, Buschmann+ '20
 - The morphism prefers the spherical shape.

YZ, McDermott, Cholis & Fox '20

Di Mauro '20, YZ, Cholis, McDermott & Surdutovich '21, McDermott, YZ, Ilias '22

The GCE remains intriguing

γ-ray @ other wavelengths

Let's combine all the inputs to understand it.

Yi-Ming Zhong | UChicago | New Developments in GCE

Pulsar candidates @ other wavelengths

82

Backup

Current status for WIMP

- No γ-ray excess observed in dwarf galaxies [tension w/ GCE is dominated by J-factor uncertainties].
- The parameter space still exists

Cholis+, '20

A side note: wavelets are useful to find pt source

Catalog	Exposure	Date released
1FGL	1 year	2010
2FGL	2 year	2011
3FGL	4 year	2015
4FGL-DR1	8 year	2019
4FGL-DR2	10 year	2020
4FGL-DR3	12 year	2022

#2, #3, #4, #6 got confirmed in 4FGL-DR2/DR3

A side note: wavelets are useful to find pt source

Catalog	Exposure	Date released
1FGL	1 year	2010
2FGL	2 year	2011
3FGL	4 year	2015
4FGL-DR1	8 year	2019
4FGL-DR2	10 year	2020
4FGL-DR3	12 year	2022

#2, #3, #4, #6 got confirmed in 4FGL-DR2/DR3

red circle: 4FGL-DR1 orange circle: 4FGL-DR3

Northern vs southern sky

Yi-Ming Zhong | UChicago | New Developments in GCE

North

 10^{-6}

 10^{-7}

The GCE, North/South Analysis

5 best fit models at North 2σ fit range for the 5 best fit models at North 5 best fit models at South

 2σ fit range for the 5 best fit models at South

10

E (GeV)

10⁻⁸

Fit for 22 translated regions-of-interest (ROI)

Yi-Ming Zhong | UChicago | New Developments in GCE

WIMP + MSPs for northern sky?

Model	$\widehat{\chi}^2/{ m dof}$	$\hat{p} ext{-value}$	ROI
	76.6/13	$< 10^{-6}$	$40^{\circ} \times 40^{\circ}$
MSPs	34.5/13	$1.0 imes 10^{-3}$	southern sky
	194.5/13	$< 10^{-6}$	northern sky
DM DM $\rightarrow b\bar{b}$	50.5/12	1.1×10^{-6}	$40^{\circ} \times 40^{\circ}$
	17.1/12	0.15	southern sky
	88.0/12	$< 10^{-6}$	northern sky
$\mathrm{MSPs+DM}\ \mathrm{DM} o b ar{b}$	50.5/11	$< 10^{-6}$	$40^{\circ} \times 40^{\circ}$
	16.7/11	0.12	southern sky
	60.2/11	$< 10^{-6}$	northern sky

Yi-Ming Zhong | UChicago | New Developments in GCE

Test the morphism of GCE

Prefer slightly oblate shape

Yi-Ming Zhong | UChicago | New Developments in GCE

90