

Global studies of beyond the Standard Model theories: dark matter and supersymmetry

Tomás Gonzalo

Karlsruhe Institut für Technologie

King's College London, 26 April 2023

Overview

1 Beyond the Standard Model

- Dark Matter models
- Supersymmetric models

2 Global fits • GAMBIT

3 Results

Outline

1 Beyond the Standard Model

- Dark Matter models
- Supersymmetric models

2) Global fits• GAMBIT

3 Results

4 Conclusions

Beyond the SM

- SM must be extended
- Phenomenological issues
 - \rightarrow Gravity
 - $\rightarrow~$ Dark Matter & Dark Energy
 - \rightarrow Neutrino masses
 - \rightarrow Baryon asymmetry
 - \rightarrow Precision measurements
- Theoretical issues
 - \rightarrow Hierarchy problem
 - \rightarrow Vacuum stability
 - $\rightarrow~{\rm Charge}$ quantisation
 - $\rightarrow \dots$

- BSM models attempt to resolve some of these issues
 - $\rightarrow~{\rm UV}$ complete models introduce new particles and new parameters
 - $\rightarrow~{\rm Predictions}$ must not contradict precise SM measurements
 - $\rightarrow~{\rm Preference}$ for simplified or effective models

5/36

Dark Matter models

- Plenty of evidence for DM from astrophysical sources
- If DM is a particle and if interacts then we should be able to detect it
- Most popular DM models are WIMPs
 - $\rightarrow\,$ EW-scale mass, accesible at colliders
 - $\rightarrow~$ Just right RD through freeze-out

- So far no evidence that DM interacts with SM \rightarrow constraints on DM models
- Understand the full set of constraints on multiple DM models

• UV complete (ish): Higgs portal models \rightarrow Scalar DM (S)

$$\mathcal{L}_{S} = \frac{1}{2}\mu_{S}^{2}S^{2} + \frac{1}{2}\lambda_{hS}S^{2}|H|^{2} + \frac{1}{4}S^{4} + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S$$

 \rightarrow Vector DM (V_{μ})

$$\mathcal{L}_{V} = -\frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}\mu_{V}^{2}V_{\mu}V^{\mu} - \frac{1}{4!}\lambda_{V}(V_{\mu}V^{\mu})^{2} + \frac{1}{2}\lambda_{hV}V_{\mu}V^{\mu}H^{\dagger}H$$

 \rightarrow Fermionic DM (Dirac, ψ)

$$\mathcal{L}_{\psi} = \bar{\psi}(i\partial \!\!\!/ - \mu_{\psi})\psi - \frac{\lambda_{\psi}}{\Lambda_{\psi}}(\cos\theta\bar{\psi}\psi + \sin\theta\bar{\psi}i\gamma_{5}\psi)H^{\dagger}H$$

 $\rightarrow\,$ Fermionic DM (Majorana, $\chi)$

$$\mathcal{L}_{\chi} = \frac{1}{2}\bar{\chi}(i\partial \!\!\!/ - i\mu_{\chi})\chi - \frac{1}{2}\frac{\lambda_{h}\chi}{\Lambda_{\chi}}(\cos\theta\bar{\chi}\chi + \sin\theta\bar{\chi}i\gamma_{5}\chi)H^{\dagger}H$$

- Simplifed DM models
- Singlet DM candidate plus mediator that couples to SM particles
- E.g vector mediator V_{μ} that couples only to quarks

$$\begin{aligned} \mathcal{L}_{\mathrm{V}} &= -\frac{1}{4} F_{\mu\nu}' F'^{\mu\nu} - \frac{1}{2} m_{\mathrm{M}}^2 V_{\mu} V^{\mu} + g_{\mathrm{q}} V_{\mu} \bar{q} \gamma^{\mu} q \\ \bullet \ \mathrm{DM} \ \mathrm{can} \ \mathrm{be} \ \mathrm{a} \ \mathrm{scalar} \ (\phi), \ \mathrm{a} \ \mathrm{vector} \ (X_{\mu}) \ \mathrm{or} \ \mathrm{a} \ \mathrm{fermion} \ (\psi \ \mathrm{or} \ \chi) \\ \mathcal{L}_{\phi} &= \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m_{\mathrm{DM}}^2 \phi^{\dagger} \phi + i g_{\mathrm{DM}}^{\mathrm{V}} V_{\mu} \Big(\phi^{\dagger} (\partial^{\mu} \phi) - (\partial^{\mu} \phi^{\dagger}) \phi \Big) \,, \\ \mathcal{L}_{X} &= \frac{1}{2} X_{\mu\nu}^{\dagger} X^{\mu\nu} + m_{\mathrm{DM}}^2 X_{\mu}^{\dagger} X^{\mu} - i g_{\mathrm{DM}} \Big(X_{\nu}^{\dagger} \partial_{\mu} X^{\nu} - (\partial_{\mu} X^{\dagger \nu}) X_{\nu} \Big) V^{\mu} \,, \\ \mathcal{L}_{\chi} &= i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\mathrm{DM}} \bar{\chi} \chi + V_{\mu} \bar{\chi} (g_{\mathrm{DM}}^{\mathrm{V}} + g_{\mathrm{DM}}^{\mathrm{A}} \gamma^{5}) \gamma^{\mu} \chi \,, \\ \mathcal{L}_{\psi} &= \frac{1}{2} i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m_{\mathrm{DM}} \bar{\psi} \psi + \frac{1}{2} g_{\mathrm{DM}}^{\mathrm{A}} V_{\mu} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \,, \end{aligned}$$

T. Gonzalo (KIT)

7/36

- Effective field theory of DM (DM EFT)
- Dirac fermionic DM χ : $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{int} + \overline{\chi} (i \partial \!\!/ m_{\chi}) \chi$
- Effective interactions (quarks/gluons): $\mathcal{L}_{int} = \sum_{a,d} \frac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_a^{(d)}$

$$\begin{split} \mathcal{Q}_{1}^{(5)} &= \frac{e}{8\pi^{2}} (\overline{\chi} \sigma_{\mu\nu} \chi) F^{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(5)} &= \frac{e}{8\pi^{2}} (\overline{\chi} i \sigma_{\mu\nu} \gamma_{5} \chi) F^{\mu\nu} \\ \mathcal{Q}_{1,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi) (\overline{q} \gamma^{\mu} q) \,, \\ \mathcal{Q}_{2,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \gamma_{5} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{3,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{4,q}^{(6)} &= (\overline{\chi} \gamma_{\mu} \gamma_{5} \chi) (\overline{q} \gamma^{\mu} \gamma_{5} q) \,, \\ \mathcal{Q}_{1}^{(6)} &= \frac{a_{s}}{12\pi} (\overline{\chi} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(7)} &= \frac{a_{s}}{12\pi} (\overline{\chi} i \gamma_{5} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\overline{\chi} i \gamma_{5} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} \,, \end{split}$$

$$\begin{split} \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\overline{\chi}i\gamma_{5}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} \,, \\ \mathcal{Q}_{5,q}^{(7)} &= m_{q} (\overline{\chi}\chi) (\overline{q}q) \,, \\ \mathcal{Q}_{6,q}^{(7)} &= m_{q} (\overline{\chi}i\gamma_{5}\chi) (\overline{q}q) \,, \\ \mathcal{Q}_{7,q}^{(7)} &= m_{q} (\overline{\chi}\chi) (\overline{q}i\gamma_{5}q) \,, \\ \mathcal{Q}_{8,q}^{(7)} &= m_{q} (\overline{\chi}i\gamma_{5}\chi) (\overline{q}i\gamma_{5}q) \,, \\ \mathcal{Q}_{9,q}^{(7)} &= m_{q} (\overline{\chi}\sigma^{\mu\nu}\chi) (\overline{q}\sigma_{\mu\nu}q) \,, \\ \mathcal{Q}_{10,q}^{(7)} &= m_{q} (\overline{\chi}i\sigma^{\mu\nu}\gamma_{5}\chi) (\overline{q}\sigma_{\mu\nu}q) \,. \end{split}$$

- \rightarrow DM interacting with nuclei
- \rightarrow LZ, XENON1T, PandaX,...

Relic density!

T. Gonzalo (KIT)

- \rightarrow DM annihilates into SM particles
- $\rightarrow \gamma$ rays, ν s, \bar{p} , ...
- \rightarrow Fermi-LAT, IceCube, AMS02

- $\rightarrow \text{ LHC searches for} \\ \text{large } \not\!\!\!E_T$
- $\rightarrow\,$ H invisible width

Supersymmetric models

- Symmetry between fermions and bosons
- Predicts a whole new spectrum of supersymmetric partners

GOOD

- $\rightarrow\,$ Solves hierarchy problem
- \rightarrow Provides DM candidate
- \rightarrow Stabilises vacuum

T. Gonzalo (KIT)

BAD

- \rightarrow Many new parameters $\mathcal{O}(100)$
- \rightarrow No evidence at LHC or precision measurements

- Reduce number of parameters with simple SUSY models
 - \rightarrow Unification at some high scale (GUT scale)

CMSSM	$\{m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$
NUHM1	$\{m_0, m_H, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$
NUHM2	$\{m_0, m_{H_u}, m_{H_d}, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$

 $\rightarrow~{\rm Simplified}$ weak-scale SUSY

MSSM7	$\{A_t, A_b, m_{H_u}, m_{H_d}, m_{\tilde{f}}, M_2, \tan\beta\}$
MSSM11 (pMSSM)	$\{A_{(t,b,l)}, m_{H_{(u,d)}}, m_{(\tilde{q},\tilde{l})}, M_{(1,2,3)}, \tan\beta\}$

 $\rightarrow~{\rm Split}~{\rm SUSY}$ models

EWMSSM	$\{M_1, M_2, \mu, \tan\beta\}$
$EWMSSM + \tilde{G}$	$\{M_1, M_2, \mu, \tan\beta, m_{\tilde{G}}\}$

 $\rightarrow~{\rm Many}$ many more

Supersymmetric models

- Reinterpretation of SUSY searches at the LHC
- LHC results often given in simplified models
 - \rightarrow Production of lightest states
 - \rightarrow Fixed branching ratios
 - \rightarrow Sometimes misses interesting pheno
- Necessary to recast to complete models
 - \rightarrow Availabily of analysis data (HEPData)
 - Documentation of statistical models
 - Reinterpretation Forum \rightarrow [arxiv:2003.07868]

HEP Software Foundation

Understanding the full implications of [experimental] searches requires the interpretation of the experimental results in the context of many more theoretical models than are currently explored at the time of publication.

 $\approx 600 \frac{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{1} \rightarrow WZ \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \text{ whore bins}(*) m(\tilde{\chi}_{1}^{1})}{100}$

Outline

Beyond the Standard Model
 Dark Matter models
 Supersymmetric models

Global fits • GAMBIT

3 Results

4 Conclusions

Global fits

- Multitude of experimental observables for each model
- Theory predictions f(x)
- Experiments measure $\mathcal{L}(\theta)$
- One needs

$$\mathcal{L}(x;\theta) = rac{\mathcal{L}(\theta;x)\pi(x)}{\pi(\theta)}$$

- Exclusion regions do not properly represent the model predictions
- Becomes impossible to analyse signals
- Combine all constraints into a composite likelihood

 $\mathcal{L} = \mathcal{L}_{Collider} \mathcal{L}_{Higgs} \mathcal{L}_{DM} \mathcal{L}_{Flavour} \dots$

KCL, 26/4/23

14/36

T. Gonzalo (KIT)

Global fits

- Many BSM models come with many parameters
- Hard to find interesting regions
- Random methods are inefficient
- Mostly sample the boundary
- Need smart sampling strategies (differential, nested, genetic,...)

15/36

Global fits

• Assessment of validity of models should be done with rigorous statistical interpretations

Frequentist

- How well does my model reproduce the data?
- Parameter -10^{-10} estimation: -20^{-10} profiling -30^{-20} $\mathcal{L}/\mathcal{L}_{max}$ -30^{-30} We the -10^{-10}
- Goodness-of-fit: *p*-value
- Must include all tests, LEE

Bayesian

- How much I trust my model given the data?
- Parameter estimation: marginalising P/P_{max}

- Model comparison: Bayes factors
- Prior dependence
- All of this comes with serious computational challenges → GAMBIT
 T. Gonzalo (KIT)
 KCL, 26/4/23
 KCL, 26/4/23

GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

github.com/GambitBSM

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- · Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScantEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim

Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Benvial, S Bloor, Lu Braseth, T Bringmann, A Buckley, J Butterworth, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edgijö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, M Lecroq, P Jackson, D Jacob, C Lin, FN Mahmoudi, G Martinez, H Pacey, MT Prim, T Procter, F Rajec, A Raklev, JJ Renk, R Nuiz, A Scaffidi, P Scott, N Serra, P Stöcker, W. Su, J Van den Abeele, A Vincent, C Veniger, A Woodcock, M White, Y Zhang ++

80+ participants in many experiments and numerous major theory codes

Karlsruher Institut für Technologie

Modules (Bits)

- Physics Modules
 - \rightarrow ColliderBit: collider searches
 - \rightarrow **DarkBit**: relic density, dd,...
 - \rightarrow FlavBit: flavour observables
 - \rightarrow **SpecBit**: spectra, RGE running
 - \rightarrow **DecayBit**: decay widths
 - \rightarrow **PrecisionBit**: precision tests
 - \rightarrow **NeutrinoBit**: neutrino likelihoods
 - \rightarrow **CosmoBit**: cosmological constraints
- ScannerBit : stats and sampling \rightarrow Diver, GreAT, Multinest, Polychord, ...
- Models: hierarchical model database
- Core : dependency resolution [Eur.Phys.J. C78 (2018) no.2, 98]
- **Backends** : External tools to calculate observables
- GUM: Autogeneration of code

[Eur.Phys.J. C77 (2017) no.11, 795]

- [Eur.Phys.J. C77 (2017) no.12, 831]
- [Eur.Phys.J. C77 (2017) no.11, 786]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J. C78 (2018) no.1, 22]
 - [Eur.Phys.J.C 80 (2020) no.6, 569]

[JCAP 02 (2021) 022]

[Eur.Phys.J. C77 (2017) no.11, 761]

T. Gonzalo (KIT)

[Eur.Phys.J. C81 (2021) no 12, 1103]

Examples

THDM-III

T. Gonzalo (KIT)

Outline

Beyond the Standard Model

Results

Results

- $\rightsquigarrow\,$ Higgs portal DM
- \rightsquigarrow Simplified DM models
- \rightsquigarrow DM EFT
- $\rightsquigarrow \ {\rm GUT \ scale \ SUSY}$
- \rightsquigarrow EW MSSM + \tilde{G}

Higgs portal DM

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016, 17 & 4T, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017 & 2019, DarkSide-50, LZ 2022
- Relic abundance
 - $\rightarrow\,$ Planck 2015: $\Omega_{\rm DM}h^2 \leq 0.1188 \pm 0.0010$
- Indirect detection with $\gamma\text{-rays}$
 - $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $Fermi\text{-}\mathrm{LAT}$ data
- Indirect detection with neutrinos Capt'n General, nulike
 - $\rightarrow~79\text{-string}$ IceCube search
- Indirect detection with antiprotons
 - $\rightarrow~\mathbf{AMS-02}$ using the INJ.BRK+vA propagation model
- Higgs invisible width
 - $\rightarrow \text{ BR}_{\text{inv}}(h \rightarrow \bar{X}X) < 19\% \ (2\sigma) \ [< 14\% \ (95\% \ \text{CL})]$
- Theoretical constraints
 - $\rightarrow~{\rm Perturbative}$ unitarity and EFT validity

 $\mathsf{DarkSUSY},\,\mathsf{plc}$

gamLike

DDCalc

pbarlike

Higgs portal DM

• Scalar DM

[GAMBIT, Eur.Phys.J.C 77 (2017) 8, 568]

[S.Balan et al, arXiv:2303.07362 [hep-ph]]

- Disconnected regions: along resonance $m_s \sim m_h/2$ and high mass
- High mass almost completely excluded by DD, ID and RD
- Small excess in Higgs invisible decay $BR_{inv} = 0.06$

T. Gonzalo (KIT)

• Vector DM

KCL, 26/4/23

- Resonance region and highest mass region survive
- Intermediate mass killed by unitarity bound
- Inclusion of recent DD constraints may kill high mass

T. Gonzalo (KIT)

Higgs portal DM

• Majorana fermion DM (\approx Dirac DM)

[GAMBIT. Eur.Phys.J.C 79 (2019) 1, 38]

- Resonance and high mass regions connected
- Looser constraints from DD due to pseudoscalar interactions

Higgs portal DM

• Additional parameter CP phase ξ

CAMBIT v1 21

 $\log_{10} (\lambda_{h_X}/\Lambda_X/GeV$

 $\begin{array}{c} & & \\$

- Preferred pseudoscalar interactions
- Pure scalar not allowed at high masses
- Due to suppression of DD signals, no significant change with LZ & PandaX 4T

26/36

Simplified DM models

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016-17 & 4T, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, DarkSide-50 and LZ 2022
- Relic abundance
 - \rightarrow Planck 2018: $\Omega_{\rm DM} h^2 \le 0.120 \pm 0.001$
- ID with γ -rays
 - $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $\mathit{Fermi-LAT}$ data
- Collider constraints
 - \rightarrow ATLAS 139fb⁻¹ mono-jet search
 - \rightarrow CMS 137fb⁻¹ mono-jet search
 - $\rightarrow\,$ ATLAS & CMS dijet resonance searches
- Unitary violation $s \lesssim \frac{\sqrt{48\pi}m_{\rm DM}^2}{g_{\rm DM}}$
- Perturbativity of decay widths, $\Gamma(m_M) \leq m_M$, $\Gamma(\sqrt{s}) \leq \sqrt{s}$

CalcHEP, DarkSUSY, plc

MadGraph_aMC@NLO, Pythia

CalcHEP, gamLike

DirectDM, DDCalc

Simplified DM models

• Scalar DM

• Vector DM

Simplified DM models

• Dirac fermion DM

• Majorana fermion DM

DM EFT

- Direct Detection
 - \rightarrow XENON1T, LUX 2016, PandaX 2016-17, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, and DarkSide-50
- Relic abundance
 - \rightarrow Planck 2018: $\Omega_{\rm DM}h^2 < 0.120 \pm 0.001$
- ID with γ -rays

 \rightarrow Pass-8 combined of 15 dSphs from *Fermi*-LAT data

- ID with neutrinos DirectDM, Capt'n General, nulike
 - \rightarrow 79-string IceCube search
- ID constraints from CMB
 - $\rightarrow 95\%$ CL limit on energy deposition efficiency $f_{\rm eff}$
- Collider constraints
 - \rightarrow ATLAS 139fb⁻¹ mono-jet
 - \rightarrow CMS 36fb⁻¹ mono-jet

CalcHEP, DarkSUSY, plc

CalcHEP, gamLike

DirectDM, DDCalc

CalcHEP, DarkSUSY, DarkAges

MadGraph_aMC@NLO, Pythia

30 / 36

Results

- \rightarrow LHC constrains large Λ small m_{γ} , absent for $\Lambda < 250$ GeV
- \rightarrow Fermi-LAT data ($m_{\gamma} \approx 5 \text{ GeV}$)
- $\rightarrow f_{\rm DM} < 1$ for $m_{\chi} < 100$ GeV
- \rightarrow Monojet excess with full LHC
- \rightarrow Upper limit on Λ

T. Gonzalo (KIT)

31 / 36

Karlsruher Institut für Technologie

[GAMBIT, arXiv:2303.15527 [hep-ph]]

- LHC SUSY searches
 - $\rightarrow~15$ ATLAS and 12 CMS Run 2
 - $\rightarrow \gamma + E_{\rm T}^{\rm miss}$
 - $\rightarrow 2/3/4$ leptons + $E_{\rm T}^{\rm miss}$
 - $\rightarrow 0/1/2 \text{ leptons} + \tilde{t} + E_{\mathrm{T}}^{\mathrm{miss}}$
 - $\rightarrow 2/3 \text{ b-jets} + 0/1 \text{ lepton} + E_{\mathrm{T}}^{\mathrm{miss}}$
 - \rightarrow multiple jets + $E_{\rm T}^{\rm miss}$
- LHC "SM" xsec measurements
 - $\rightarrow~22$ pools with 45 ATLAS, CMS and LHCb measurements

$$\begin{array}{l} \rightarrow \ pp \rightarrow ZZ \rightarrow 4l \\ \rightarrow \ pp \rightarrow W^+W^- \rightarrow ll'(j) + E_{\rm T}^{\rm miss} \end{array}$$

- $\rightarrow pp \rightarrow Z\gamma \rightarrow ll\gamma$
- LEP xsection constraints

• Profile likelihoods for neutralinos and charginos

- \rightarrow Preferred scenario are Higgsino-like, i.e. $\mu < M_1, M_2$
- \rightarrow At 2σ , $\mu < 0$, $\tan \beta \sim 1$, \Rightarrow 140 GeV $< \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} < 500$ GeV
- \rightarrow Dominant channels are $\tilde{\chi}_1^0 \rightarrow h \tilde{G}, \, \tilde{\chi}_1^0 \rightarrow Z \tilde{G}$
- \rightarrow Fits excess is leptons + $E_{\rm T}^{\rm miss}$ and b-jets + $E_{\rm T}^{\rm miss}$ searches
- $\rightarrow\,$ Simultaneous fit to multi-lepton and multi-b signal regions

T. Gonzalo (KIT)

KCL, 26/4/23 34/36

Outline

Beyond the Standard Model
 Dark Matter models
 Supersymmetric models

Global fitsGAMBIT

Conclusions

- Beyond the SM theories are necessary to complement the SM
- Hard to explore due to the large number of parameters and constraints
- Global fits are an efficieent methodology to study BSM theories with statistical rigour
- GAMBIT provides a flexible and modular framework for global fits
- Dark Matter models
 - $\rightarrow\,$ Most WIMP models in a lot of trouble (HP)
 - $\rightarrow\,$ Resonant annhibitation survives consistently (HP, SDM)
 - $\rightarrow\,$ Fermion DM less excluded due to suppression of DD (HP, SDM)
 - \rightarrow Upper limit on the scale of new physics (DMEFT)

• Supersymmetric models

- $\rightarrow\,$ Very strongly constrained by LHC searches
- $\rightarrow~{\rm Only}$ compressed Higgsino scenario remaining at low masses
- $\rightarrow\,$ Small combined excesses fit better SUSY than SM

KCL, 26/4/23

Backup

DM EFT

- Running and mixing
 - $\rightarrow\,$ For direct detection WCs are needed at $\mu=2\,\,{\rm GeV}$
 - \rightarrow For $\Lambda > m_t(m_t)$:

$$\mathcal{C}_{1,2}^{(5)} = -4 \frac{m_t(m_t)^2}{\Lambda^2} \log \frac{\Lambda^2}{m_t(m_t)^2} \, \mathcal{C}_{9,10}^{(7)}$$

$$\Delta C_i^{(7)} = -C_{i+4,q}^{(7)} \quad (i = 1, 2)$$

$$\Delta C_i^{(7)} = C_{i+4,q}^{(7)} \quad (i = 3, 4)$$

- EFT validity
 - \rightarrow DD requires $\Lambda > 2$ GeV
 - \rightarrow Annihilation processes (ID/RD) require $\Lambda > 2m_{\chi}$
 - \rightarrow Collider searches $\Lambda > \not\!\!\! E_T$

Karlsruher Institut für Technologie

Likelihoods

• Direct Detection

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = \frac{\rho}{m_T \, m_\chi} \int_{v_{\mathrm{min}}}^{\infty} v f(v) \frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}} \mathrm{d}^3 v$$

$$v_{\rm min}(E_{\rm R}) = \sqrt{\frac{m_T E_{\rm R}}{2\,\mu^2}}$$

 \rightarrow Non-relativistic operators

$$\mathcal{L}_{\mathrm{NR}} = \sum_{i,N} c_i^N(q^2) \mathcal{O}_i^N \; ,$$

→ XENON1T, LUX 2016, PandaX 2016-17, CDMSlite, CRESST-II, CRESST-III, PICO-60 2017-19, and DarkSide-50

• Relic abundance $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v_{\rm rel} \rangle \left(n_{\chi} n_{\bar{\chi}} - n_{\chi,\rm eq} n_{\bar{\chi},\rm eq} \right)$ $\rightarrow \text{ Planck 2018: } \Omega_{\rm DM} h^2 \leq 0.120 \pm 0.001$

Likelihoods

• Indirect detection with γ -rays $\rightarrow \gamma$ -rays from DM annihilation in dSphs

 $\ln \mathcal{L}_{dwarfs}^{prof.} = \ln \mathcal{L}_{ki} \left(\Phi_i \cdot J_k \right) + \ln \mathcal{L}_J$

- $\rightarrow~\mathsf{Pass-8}$ combined of 15 dSphs from $Fermi\text{-}\mathrm{LAT}$ data
- Indirect detection with νs
 - → Solar capture of DM leads to very high energy ν s > solar ν s
 - \rightarrow 79-string IceCube search
- Indirect detection constraints from CMB
 - $\rightarrow\,$ Injected energy (γ,e^{\pm}) changes reion history and optical depth τ
 - $\rightarrow~{\rm CMB}$ is sensitive to energy deposition efficiency $f_{\rm eff}$ via combination

$$p_{\rm ann} = f_{\chi} f_{\rm eff} \frac{\langle \sigma v \rangle}{m_{\chi}}$$

T. Gonzalo (KIT)

Likelihoods

- Collider constraints
 - $\rightarrow\,$ Many signatures for DM searches

$$pp \to \chi \chi j \to j + \not\!\!\!E_T$$

- $\rightarrow \mathsf{MadGraph}_{a}\mathsf{MC}@\mathsf{NLO} \rightsquigarrow \mathsf{Pythia}$
- $\rightarrow~$ Interpolated grids for σ and ϵA
- \rightarrow Events per $\not\!\!E_T$ bin (signal regions)

$$N = L \times \sigma \times (\epsilon A)$$

- $\rightarrow \text{ATLAS } 139 \text{fb}^{-1} \text{ mono-jet} \\ \sim \text{SR with best significance} \\ \sim \mathcal{L}_{\text{ATLAS}}(s_i) \equiv \mathcal{L}_{\text{ATLAS}}(s_i, \hat{\gamma}_i)$
- \rightarrow Capped likelihood

 $\mathcal{L}_{\mathrm{cap}}(\mathbf{s}) = \min[\mathcal{L}_{\mathrm{LHC}}(\mathbf{s}), \mathcal{L}_{\mathrm{LHC}}(\mathbf{s}=\mathbf{0})]$

 \rightarrow CMS 36fb⁻¹ mono-jet

 \rightsquigarrow Profile over systematics

 $\sim \mathcal{L}_{\text{CMS}}(\mathbf{s}) \equiv \mathcal{L}_{\text{CMS}}(\mathbf{s}, \hat{\hat{\gamma}})$

Scan framework

• Model parameters

DM mass	m_{χ}
New physics scale	Λ
Wilson coefficients	$\mathcal{C}_a^{(d)}$

• Nuisance parameters

Local DM density Most probable speed Galactic escape speed	$ ho_0 onumber v_{ m peak} onumber v_{ m esc}$
Running top mass ($\overline{\text{MS}}$ scheme)	$m_t(m_t)$
Pion-nucleon sigma term	$\sigma_{\pi N}$
s-quark contrib. to nucleon spin	Δs
s-quark nuclear tensor charge	g_T^s
s-quark charge radius of the proton	r_s^2

• Needs smart sampling to efficiently scan over all parameters and explore interference effects among WCs

Scan framework

Operators

	SI scattering	SD scattering	Annihilations
$\mathcal{Q}_{1,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)$	unsuppressed		s-wave
$\mathcal{Q}_{2,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}q)$	suppressed	_	<i>p</i> -wave
$\mathcal{Q}_{3,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$		suppressed	s-wave
$\mathcal{Q}_{4,q}^{(6)} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{q}\gamma^{\mu}\gamma_{5}q)$		unsuppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_1^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi}\chi) G^{a\mu\nu} G^a_{\mu\nu}$	unsuppressed	—	<i>p</i> -wave
$\mathcal{Q}_2^{(7)} = \frac{\alpha_s}{12\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} G^a_{\mu\nu}$	suppressed	_	s-wave
$\mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\overline{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}$	_	suppressed	<i>p</i> -wave
$\mathcal{Q}_4^{(7)} = \frac{\alpha_s}{8\pi} (\overline{\chi} i \gamma_5 \chi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}$	_	suppressed	s-wave
$\mathcal{Q}_{5,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}q)$	unsuppressed	_	$p\text{-wave} \propto m_q^2/m_\chi^2$
$\mathcal{Q}_{6,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}q)$	suppressed		s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{7,q}^{(7)} = m_q(\overline{\chi}\chi)(\overline{q}i\gamma_5 q)$	_	suppressed	$p\text{-wave} \propto m_q^2/m_\chi^2$
$\mathcal{Q}_{8,q}^{(7)} = m_q(\overline{\chi}i\gamma_5\chi)(\overline{q}i\gamma_5q)$	_	suppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{9,q}^{(7)} = m_q (\overline{\chi} \sigma^{\mu\nu} \chi) (\overline{q} \sigma_{\mu\nu} q)$	loop-induced	unsuppressed	s-wave $\propto m_q^2/m_\chi^2$
$\mathcal{Q}_{10,q}^{(7)} = m_q (\overline{\chi} i \sigma^{\mu\nu} \gamma_5 \chi) (\overline{q} \sigma_{\mu\nu} q)$	loop-induced	suppressed	s-wave $\propto m_q^2/m_\chi^2$
T. Gonzalo (KIT)			KCL, 26/4/23

36 / 36

Hadronic input parameters

Parameter	Value	Parameter	Value
$\sigma_{\pi N}$	50(15) MeV [1]	μ_p	2.793 -[2]
$Bc_5(m_d - m_u)$	-0.51(8) MeV [3]	μ_n	-1.913 [2]
g_A	1.2756(13) [2]	μ_s	-0.036(21) [4]
m_G	836(17) MeV [1]	g_T^u	0.784(30) [5]
σ_s	52.9(7.0) MeV [6]	g_T^d	-0.204(15) [5]
$\Delta u + \Delta d$	0.440(44) [7]	g_T^s	$-27(16)\cdot 10^{-3}$ [5]
Δs	-0.035(9) [7]	$B_{T,10}^{u/p}$	3.0(1.5) [8]
$B_0 m_u$	$0.0058(5) \ { m GeV}^2$ [9]	$B_{T,10}^{d/p}$	0.24(12) [8]
$B_0 m_d$	$0.0124(5) \ { m GeV}^2$ [9]	$B_{T,10}^{s/p}$	0.0(2) [8]
$B_0 m_s$	$0.249(9) \ { m GeV}^2$ [9]	r_s^2	$-0.115(35) \text{ GeV}^{-2}$ [4]
[1][F. Bishara et. a	1., JHEP 11 (2017) 059] [2][PDG 2020] [3]	[A. Crivellin et. al., Phys. Rev. D
89 (2014) 054021] [4	4][D. Djukanovic et. al.,	Phys. Rev. Lett.	123 (2019) 212001, R. S. Sufian
et. al, Phys. Rev.	Lett. 118 (2017) 042001] [5][R. Gupta,	et. al., Phys. Rev. D 98 (2018)
091501] [6][S. Aoki	et. al., Eur. Phys. J.	C 80 (2020) 113]	[7][J. Liang et. al., Phys. Rev. D
98 (2018) 074505] [8	B][B. Pasquini et. al., Ph	ys. Rev. D72 (20	05) 094029] [9][F. Bishara et. al.,
arXiv:1708.02678.]			

T. Gonzalo (KIT)

Nuisance parameters

Nuisance parameter		Value $(\pm 3\sigma \operatorname{range})$
Local DM density	$ ho_0$	$0.2 - 0.8 {\rm GeV} {\rm cm}^{-3}$
Most probable speed	v_{peak}	$240(24){\rm km}~{\rm s}^{-1}$
Galactic escape speed	$v_{ m esc}$	$528(75){\rm km}~{\rm s}^{-1}$
Running top mass ($\overline{\text{MS}}$ scheme)	$m_t(m_t)$	$162.9(6.0){ m GeV}$
Pion-nucleon sigma term	$\sigma_{\pi N}$	$50(45) { m MeV}$
Strange quark contrib. to nucleon spin	Δs	-0.035(0.027)
Strange quark nuclear tensor charge	g_T^s	-0.027(0.048)
Strange quark charge radius of the proton	r_s^2	$-0.115(0.105) \text{ GeV}^{-2}$

DM EFT

- Include dim-7 operators, $\Omega_{\rm DM}h^2$ upper limit, LHC loglike *capped*
 - $\rightarrow~{\rm No}$ change on large Λ small m_{χ} region
 - \rightarrow Neither $\mathcal{Q}_{1-4}^{(7)}$ (LHC) nor $\mathcal{Q}_{5-10,q}^{(7)}$ (suppressed) contribute to ann xsec
 - $\rightarrow\,$ However, RD can be saturated for $m_\chi < 100$ GeV (and small $\Lambda)$
 - $\rightarrow \mathcal{Q}_3^{(7)}$ and $\mathcal{Q}_{7,q}^{(7)}$ give unconstrained signals in DD and ID
 - $\rightarrow\,$ Similar fits to LHC excesses, even when dim-6 ops are zero

• ATLAS, Poisson loglike marginalised over nuisance ξ = relative signal/bkg uncertainties

$$\begin{aligned} \mathcal{L}_{\mathrm{marg}}(n|p) &= \int_0^\infty \frac{[\xi p]^n \, e^{-\xi p}}{n!} \\ &\times \frac{1}{\sqrt{2\pi}\sigma_\xi} \frac{1}{\xi} \exp\left[-\frac{1}{2} \left(\frac{\ln\xi}{\sigma_\xi}\right)^2\right] \mathrm{d}\xi \,. \end{aligned}$$

• CMS, convolved Poisson-Gaussian, profiled over systematic uncertainties γ on expected background yields with covariance matrix Σ

$$\mathcal{L}(\mathbf{s},\gamma) = \prod_{i}^{N_{\text{bin}}} \left[\frac{(s_i + b_i + \gamma_i)^{n_i} e^{-(s_i + b_i + \gamma_i)}}{n_i!} \right] \\ \times \frac{1}{\sqrt{\det 2\pi\Sigma}} e^{-\frac{1}{2}\gamma^{\mathbf{T}} \Sigma^{-1} \gamma}.$$

DM EFT

• $\mathcal{C}_1^{(6)}$

- \rightarrow spin-independent scattering
- \rightarrow strongly constrained \rightsquigarrow very small

• $C_2^{(6)}$

- \rightarrow momentum-dependent scattering
- $\rightarrow~\Lambda < 250~{\rm GeV}$ DD constrained

 $\rightarrow \Lambda > 250 \text{ GeV LHC constrained}$ (6)

• $C_3^{(6)}$

- $\rightarrow~both~{\rm SD}$ and MD scattering
- $\rightarrow~\Lambda<250$ GeV weak DD constraints
- \rightarrow Main contribution to Fermi LAT
- $\rightarrow~\Lambda>250$ GeV LHC constrained
- $\mathcal{C}_4^{(6)}$
 - \rightarrow spin-dependent scattering
 - \rightarrow identical to $\mathcal{C}_2^{(6)}$

KCL, 26/4/23 36/36

DMEFT

Name	\mathbf{Spin}	Gauge ES	Mass ES	Param
Higgs bosons	0	$H^{0}_{u} H^{0}_{d} H^{+}_{u} H^{-}_{d}$	$h H A H^{\pm}$	-
squarks	0	$ ilde{u}_L \; ilde{u}_R \; ilde{d}_L \; ilde{d}_R$	-	
		$\tilde{c}_L \ \tilde{c}_R \ \tilde{s}_L \ \tilde{s}_R$		
		${ ilde t}_L { ilde t}_R { ilde b}_R { ilde b}_R$	$ ilde{t}_1 \ ilde{t}_2 \ ilde{b}_1 \ ilde{b}_2$	-
sleptons	0	$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	-	-
		$ ilde{\mu}_L ilde{\mu}_R ilde{ u}_\mu$	-	-
		$\tilde{\tau}_L \ \tilde{\tau}_R \ \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$	-
neutralino	1/2	$\tilde{B} \ \tilde{W}^3 \ \tilde{H}^0_u \ \tilde{H}^0_d$	$ ilde{\chi}^{0}_{1} \; ilde{\chi}^{0}_{2} \; ilde{\chi}^{0}_{3} \; ilde{\chi}^{0}_{4}$	$M_1, M_2, \mu, \tan \beta$
chargino	1/2	$\tilde{W}^{\pm} \tilde{H}^{+}_{u} \tilde{H}^{-}_{d}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$	$\mu, M_2, \tan \beta$
gluino	1/2	\tilde{g}	-	-
gravitino	3/2	\tilde{G}	_	$m_{\tilde{G}} = 1 \text{ eV}$

- Only 7 SUSY particles below 1 TeV, other decoupled
- 4D theory parameter space: $M_1, M_2, \mu, \tan \beta$
- Light gravitino for prompt decay of lightest neutralino/chargino T. Gonzalo (KIT) KCL, 26/4/23 36/36

Scan framework

- GAMBIT modules used for the scan
 - ightarrow SpecBit \sim
 - ightarrow DecayBit ightarrow
 - \rightarrow ColliderBit \rightsquigarrow

- ightarrow ScannerBit \sim
- Parameter ranges

$M_1(Q)$	[-1, 1] TeV	hybrid, flat
$M_2(Q)$	[0, 1] TeV	hybrid, flat
$\mu(Q)$	[-1, 1] TeV	hybrid, flat
$\tan\beta(m_Z)$	[1, 70]	log, flat
$m_{\tilde{G}}$	1 eV	fixed

one-loop spectrum with FlexibleSUSY $\tilde{\chi}^{0,\pm} \rightarrow \tilde{\chi}^{0,\pm}$ decays with SUSY-HIT $\chi^{0,\pm} \rightarrow \tilde{G}$ decays native MC event generation with Pythia 8 detector simulation with BuckFast LHC search emulation native SM measurements with Rivet and Contur sampling using diver

• Scan details

- $\rightarrow\,$ diver 1.0.4 self-adaptive rand/1/bin evolution
- $\rightarrow~16{\rm M}$ MC events for LHC searches
- $\rightarrow~100 {\rm k}~{\rm MC}$ events for measurements
- $\rightarrow 3.1 \times 10^5$ parameter samples

- Three phenomenological scenarios
 - $\rightarrow \text{ Wino NLSP: } M_2 < M_1, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \{Z, \gamma\} \tilde{G}, \\ \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} \tilde{G}$
 - $\rightarrow \text{ Higgsino NLSP: } \mu < M_1, M_2 \quad \rightsquigarrow \begin{array}{c} \tilde{\chi}_1^0 \rightarrow \{Z, h\} \tilde{G}, \\ \tilde{\chi}_2^0, \tilde{\chi}_1^{\pm} \rightarrow f^{\pm} f^{\pm, 0} \tilde{\chi}_1^0 \end{array}$
 - \rightarrow Bino NLSP: $M_1 < M_2, \mu \quad \rightsquigarrow \quad \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$
- Heavier $\tilde{\chi}_i^0 / \tilde{\chi}_i^{\pm}$ decay to NLSP with multiple $\{Z, W^{\pm}, h\}$

• Chargino NLSP extremely rare

- Impact of searches and measurements
- \rightarrow Photon searches exclude low mass binos
- \rightarrow Lepton searches exclude low mass winos
- \rightarrow Boosted boson searches exclude high mass winos
- $\begin{array}{l} \rightarrow \mbox{ Measurements} \\ \mbox{ exclude low mass} \\ \mbox{ Higgsino and winos} \end{array}$

- Module functions are the building blocks of GAMBIT
- Module functions provide a **capability**
- They have **dependencies** on other capabilities
- They have **backend** requirements
- Can be allowed for specific **models**
- Module functions are wrapped in functors
- GAMBIT resolves the dependent graph at runtime

Core

- Each module contains a collection of module functions
- Module functions provide a *capability*
- They have dependencies and backend requirements
- Allowed for specific models

// SM-like Higgs mass with theoretical uncertainties #define CAPABILITY prec_mh START_CAPABILITY

#define FUNCTION FH HiggsMass START_FUNCTION(trtplet=double>) DEPENDENCY(unipproved_MSSM_spectrum, Spectrum) DEPENDENCY(FH HiggsMasses, Fh HiggsMassObs) ALLOW_MODELS(MSSMG3atQ, MSSMG3atMGUT) #undef FUNCTION

#define FUNCTION SHD HiggsHass START_FUNCTION(tripletdouble>) DEPENBORY(uninproved_MISSM_spectrum) BACKEND_REG(SUSYM-DeitaHWiggs, (), Meal, (const HList-HReal>&)) BACKEND_REG(SUSYM-DeitaHWiggs, (), Meal, (const HList-HReal>&)) ALLOM_MODELS(HSSH6JatQ, HSSM6JatHGUT) Aundef FUNCTION

#undef CAPABILITY

• At run time a dependency tree is generated and resolved

Models

• Extensive model database

- Parent-daughter hierarchy
- Module functions are activated for each model

Backends

- External tools used to compute some physical quantity
- Interfaced with GAMBIT dynamically
- C, Fortran \rightsquigarrow POSIX dl
- $C++ \rightarrow BOSS + POSIX dl$
- Mathematica $\rightsquigarrow WSTP$
- Python \rightsquigarrow pybind11

CosmoBit	DarkBit	ColliderBit
AlterBBN 2.2 DarkAges 1.2.0 MontePythonLike 3.3.0 MultiModeCode 2.0.0 classy 2.9.4	CaptnGeneral 1.0 DDCalc 2.2.0 DarkSUSY 6.2.2 MicrOmegas 3.6.9.2 gamLike 1.0.1	HiggsBounds 4.3.1 HiggsSignals 1.4 Pythia 8.212 FlavBit
PrecisionBit	SpecBit	SuperISO 3.6
FeynHiggs 2.12.0 SUSYHD 1.0.2 gm2calc 1.3.0	FlexibleSUSY 2.0.1 SPheno 4.0.3	DecayBit SUSY_HIT 1.5
T Gonzalo (KIT)		KCL 26/4/23 36/

An example run

But...

How do I use GAMBIT with my favourite model? → Adding a model → Sorting out hierarchy → Making physics computations work with that model

How do I add a new physical observable or likelihood? ~> Create capabilities ~> Declare dependencies ~> and models ~> and backend requirements

 Write the function as a standard C++ function (one argument: the result)

36 / 36

KCL, 26/4/23

GUM

- GUM interfaces LLT SARAH and FeynRules with GAMBIT
- Uses existing HEP toolchains

• GAMBIT-compatible outputs from GUM

Generated output	FeynRules	SARAH	Usage in GAMBIT
CalcHEP	1	1	Decays, cross-sections
micrOMEGAs (via CalcHEP)	1	1	DM observables
Pythia (via MadGraph)	1	~	Collider physics
SPheno	x	1	Particle mass spectra, decay widths
Vevacious	×	1	Vacuum stability

• Primarily written in Python, with interface to Mathematica via Boost and WSTP

- Automatically generates GAMBIT code
 - $\rightarrow~{\rm Particles} \rightarrow {\rm particle}$ database and parameters $\rightarrow~{\rm Models}$
 - $\rightarrow\,$ Module functions for ColliderBit, DarkBit, DecayBit and SpecBit
 - $\rightarrow\,$ Writes interfaces to requested backends
- GUM release with GAMBIT 2.0

An example

• Majorana DM χ with scalar mediator Y

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}\overline{\chi} \left(i\partial \!\!\!/ - m_\chi \right) \chi + \frac{1}{2} \partial_\mu Y \partial^\mu Y - \frac{1}{2} m_Y^2 Y^2 - \frac{g_\chi}{2} \overline{\chi} \chi Y - \frac{c_Y}{2} \sum_i y_f \overline{f} f Y \,.$$

math:

Choose Feynkles
package: feynkles
package: feynkles
Name of the model
model: MDNSM
Model builds on the Standard Model Feynkules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDNSM.fr, plus the SM Lagrangian (LSM)
imported from the 'base model', SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM
PDG code of the annihilating DM candidate in

- # Select outputs for DM physics.
- # Collider physics is not as important in this model. output:
 - pythia: false calchep: true micromegas: true

