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Focal points

Timelike geodesic normal to spacelike hypersurface S

Focal point

A geodesic issuing normally from a spacelike hypersurface S and is continued
past a focal point no longer locally extremizes length.

▶ N: focal point

▶ AN equal to A′N

▶ ANB longer than A′CB
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The index form

Problem
Maximise proper time among timelike curves joining surface S to point q.

Consider an 1-parameter family of smooth curves γs : [0, τ ] → M

Uµ =
∂γµ

s

∂t
, V µ =

∂γµ
s

∂s

L[γ] =

∫ τ

0

|γ̇(t)| dt, |γ̇(t)| =
√

gµν γ̇µγ̇ν
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The index form

The first variation of length

dL[γs ]

ds

∣∣∣∣
s=0

= 0

The second variation of length (index form)

I [V ] =
d2L[γs ]

ds2

∣∣∣∣
s=0

Whether γ is, or is not, a local maximum of the length functional, amounts to
the absence, or presence, of a focal point.

Focal point test

I [V ] ≥ 0 for some V µ =⇒ ∃ focal point in (0, τ ]
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Null geodesics

Problem 1 L does not vary smoothly for all causal curves

Energy or action integral

E [γ] =
1

2

∫ ℓ

0

g(γ′(λ), γ′(λ))dλ

The Hessian

H[V ] ≡ d2E [γs ]

ds2

∣∣∣
s=0

Problem 2 How do we measure length? Fix parametrization on the hypersurface
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Weakened conditions

The smeared null energy condition

Conclusions

Based on: 1907.13604, 2012.11569 and 2303.06788

...



9/38

For students: focal points and how to find them Introduction The classical theorems Weakened conditions The smeared null energy condition Conclusions

Introduction

...



10/38

For students: focal points and how to find them Introduction The classical theorems Weakened conditions The smeared null energy condition Conclusions

Motivation

▶ Classical relativity theorems: powerful predictions under general
assumptions

▶ These assumptions are usually violated in the semiclassical regime:
quantum field effects become important

Question
Which classical relativity theorems still hold in the semiclassical regime and
what are the new assumptions?
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The theorems

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at
least one incomplete geodesic.

▶ Quantum gravity: is believed that it will lead to a resolution of singularities

▶ Semiclassical gravity: are singularities predicted in that context?

Hawking area theorem

The area of the black hole horizon cannot decrease over time.

Hawking
area theorem

Tension
Hawking
radiation

▶ Is the area theorem always violated semiclassically? Why?

▶ Is there a weaker version of the theorem obeyed by quantum fields?

...
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The classical theorems
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Singularity theorem structure

1. The initial or boundary condition
There exists a trapped surface (null geodesics)

rs0
r

t
˜
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Singularity theorem structure

2. The energy condition
Restriction on the stress-energy tensor expressing “physical” properties of
matter.
Null geodesics: Null energy condition (NEC) Uµ: null vector

Physical form Geometric form Perfect fluid
TµνU

µUν ≥ 0 RµνU
µUν ≥ 0 ρ+ P ≥ 0

3. Causality condition
There is a Cauchy surface: spacelike hypersurface which intersects causal
geodesics once and only once

Proof structure

1. Initial condition: Geodesics start focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ Geodesic incompleteness

...
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The area theorem structure

1. Causality condition
The spacetime is strongly asymptotically predictable:
▶ No naked singularities
▶ Asymptotically flat
▶ There is an area with Cauchy surfaces

Black hole: Area II (no null infinity)
Event horizon: the boundary
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The area theorem structure

2. The energy condition
The null convergence condition: RµνU

µUν ≥ 0

Proof structure

1. Assume the area of the horizon decreases: the null geodesics normal to the
horizon are focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ The area of the horizon cannot decrease
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Focal points

Definition
Let P be a co-dimension 2 spacelike submanifold and let γ be a causal geodesic
normal to P. Then a focal point on γ is a point where the causal geodesic no
longer extremizes the action integral.

Energy or action integral

E [γ] =
1

2

∫ ℓ

0

g(γ′(λ), γ′(λ))dλ

First derivative

dE [γs ]

ds

∣∣∣
s=0

= 0

The Hessian

H[V ] ≡ d2E [γs ]

ds2

∣∣∣
s=0
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Focusing theorem

H[V ] =

∫ ℓ

0

[
(∇UVµ)(∇UV

µ)+Rµναβ

tangent︷︸︸︷
Uµ V ν︸︷︷︸

variation

V αUβ]dλ−UµII
µ(V ,V )

∣∣∣
γ(0)

Let ei with i = 1, . . . , n − 2 be a tetrad basis on P, and parallel transport them
along γ to generate {Ei}i=1,...,n−2. Then, take f a smooth function with
f (0) = 1 and f (ℓ) = 0 and sum over i

n−2∑
i=1

H(fEi , fEi ) = −
∫ ℓ

0

(
(n − 2)f ′2(λ)− f 2RµνU

µUν
)
dλ−(n−2)f 2UµH

µ
∣∣∣
γ(0)

Hµ = 1/(n− 2)
∑n−2

i=1 IIµ(Ei ,Ei ) is the mean normal curvature vector field of P

Condition for the existence of focal points

▶ No focal point before q: H[V ] > 0 for all V

▶ Focal point before q: H[V ] < 0 for some V

...
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The Penrose singularity theorem

Theorem

(i) M is globally hyperbolic with non-compact Cauchy hypersurfaces and P

is a compact achronal smooth spacelike submanifold of M of co-dimension
2

(ii) Let γ be a null geodesic emanating normally from P with tangent vector
Uµ and let everywhere on γ

RµνU
µUν ≥ 0

(iii) For the mean normal curvature vector field Hµ = HĤµ we have H < 0

⇒ Then γ is incomplete and has length less than ℓ = 1/|H| where the affine
parameter is fixed by requiring Hµdγµ/dλ = 1 on P.
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Proof

Condition for the formation of a focal point∫ ℓ

0

(
(n − 2)f ′(λ)2 − f (λ)2RµνU

µUν)dλ ≤ −(n − 2)H
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Proof

Condition for the formation of a focal point

∫ ℓ

0

(
(n − 2)f ′(λ)2 −

+︷ ︸︸ ︷
f (λ)2RµνU

µUν )dλ ≤ −(n − 2)H

▶ Null convergence condition RµνU
µUν ≥ 0
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▶ Choose a function f (λ) = 1− λ/ℓ
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▶ Null convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ

▶ Trapped surface H < 0

⇒ Focal point for ℓ ≥ 1/|H|

Condition (i) implies the P-normal null geodesics have no focal points and thus
they have length at most ℓ.
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The Hawking area theorem

Theorem

(i) M is

strongly asymptotically predictable

(ii) Everywhere on M and for all null
vectors Uµ

RµνU
µUν ≥ 0

Let Σ1 and Σ2 be spacelike Cauchy surfaces for the globally hyperbolic region
Ṽ such that Σ2 ⊂ I+(Σ1), and given H the event horizon we define

H1 = H ∩ Σ1, H2 = H ∩ Σ2.

Then the area of H2 is greater or equal than the area of H1.

...
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Proof

Σ1

p

H

H1

Σ2
H2

∫ ℓ

0

( (n−2)/ℓ︷ ︸︸ ︷
(n − 2)f ′(λ)2 −

+︷ ︸︸ ︷
f (λ)2RµνU

µUν )dλ ≤

−(n − 2)UµH
µ

▶ Null convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ
If UµH

µ < 0 for H1 we have a focal point for
ℓ ≥ 1/|UµH

µ|.

Condition (i) implies there are no focal points on the null generators so
UµH

µ ≥ 0.

δUAH1 =

∫
H1

HµUµ ≥ 0

...



22/38

For students: focal points and how to find them Introduction The classical theorems Weakened conditions The smeared null energy condition Conclusions

Proof

Σ1

p

H

H1

Σ2
H2

∫ ℓ

0

( (n−2)/ℓ︷ ︸︸ ︷
(n − 2)f ′(λ)2 −

+︷ ︸︸ ︷
f (λ)2RµνU

µUν )dλ ≤

−(n − 2)UµH
µ

▶ Null convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ
If UµH

µ < 0 for H1 we have a focal point for
ℓ ≥ 1/|UµH

µ|.

Condition (i) implies there are no focal points on the null generators so
UµH

µ ≥ 0.

δUAH1 =

∫
H1

HµUµ ≥ 0

...



22/38

For students: focal points and how to find them Introduction The classical theorems Weakened conditions The smeared null energy condition Conclusions

Proof

Σ1

p

H

H1

Σ2
H2

∫ ℓ

0

( (n−2)/ℓ︷ ︸︸ ︷
(n − 2)f ′(λ)2 −

+︷ ︸︸ ︷
f (λ)2RµνU

µUν )dλ ≤

−(n − 2)UµH
µ

▶ Null convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ
If UµH

µ < 0 for H1 we have a focal point for
ℓ ≥ 1/|UµH

µ|.

Condition (i) implies there are no focal points on the null generators so
UµH

µ ≥ 0.

δUAH1 =

∫
H1

HµUµ ≥ 0

...



23/38

For students: focal points and how to find them Introduction The classical theorems Weakened conditions The smeared null energy condition Conclusions

Weakened conditions
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Weakened energy conditions

Problem
All pointwise energy conditions are violated by quantum fields

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible
magnitude and duration of any negative energy densities or fluxes within a
quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime) [Ford,
Roman, 1995], [Fewster, Eveson, 1998]

...
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Weakened energy conditions

Problem
All pointwise energy conditions are violated by quantum fields

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible
magnitude and duration of any negative energy densities or fluxes within a
quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)∫
dt f 2⟨:TµνU

µUν :⟩ω ≥ − 1

16π2

∫
f ′′(t)2dt

[Ford, Roman, 1995], [Fewster, Eveson, 1998]
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Weakened energy conditions

Problem
All pointwise energy conditions are violated by quantum fields

QFT
Quantum energy inequalities (QEIs) introduce a restriction on the possible
magnitude and duration of any negative energy densities or fluxes within a
quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

1

t0

∫
dt f 2⟨:TµνU

µUν :⟩ω ≥ −C

t40

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Weakened condition inspired by QEIs∫
f (t)2RµνU

µUν dt ≥ −Qm∥f (m)∥2 − Q0∥f ∥2
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The rest of the talk

1. Singularity theorems with weakened conditions inspired by QEIs

2. A null QEI: the smeared null energy condition

3. Semiclassical theorems and applications: evaporating black holes

...
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Singularity theorems with weaker conditions

Theorem [Fewster, E-AK, 2019]

(i) Energy condition

∫ ℓ

0

f (λ)2

ρ︷ ︸︸ ︷
RµνU

µUν dλ ≥ −Qm∥f (m)∥2 − Q0∥f ∥2

and Scenario 1: ρ ≥ ρ0 for [0, ℓ0]: NEC obeyed after we measure H
or Scenario 2: ρ < −ρ0 for [−ℓ0, 0]: NEC violated before we measure H

(ii) Initial condition: H ≤ −ν(Qm,Q0, ℓ0, ℓ, ρ0)

(iii) Causality condition: There exists a non-compact Cauchy surface.

⇒ The spacetime is null geodesically incomplete.

...
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Idea of the proof
Condition for the formation of a focal point∫ ℓ

0

(
(n − 2)f ′(λ)2 − f (λ)2RµνU

µUν)dλ ≤ −(n − 2)H , f (0) = 1 , f (ℓ) = 0

Energy condition∫ ℓ

0

f (λ)2RµνU
µUν dλ ≥ −Qm∥f (m)∥2 − Q0∥f ∥2 , f (0) = f (ℓ) = 0

0 ℓ0 ℓ

1

λ

f(λ)

ϕ(λ)

Two options:
▶ Pick functions for general m
▶ Optimize for m = 1

H ≤ −ν(Qm,Q0, ℓ0, ℓ, ρ0)

...
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Generalized area theorem

Question
What is the weakest energy condition so that the classical area theorem holds?

Observation
We need to have a focal point for UµH

µ < 0 to conclude the non-decrease of
the horizon. Then ∫ ℓ

0

f (λ)2RµνU
µUνdλ ≥ (n − 2)∥f ′∥2

Example of such a condition: Half averaged null energy condition∫ ∞

0

RµνU
µUνdλ ≥ 0

[Lesourd, 2017]

...
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Generalized area theorem

Question
What happens if we have a condition inspired by QEIs?

Theorem [E-AK, Sacchi, 2023]

(i) Energy condition

∫ ℓ

0

f (λ)2

ρ︷ ︸︸ ︷
RµνU

µUν dλ ≥ −Qm∥f (m)∥2 − Q0∥f ∥2

and Scenario 1: ρ ≥ ρ0 for [0, ℓ0]

(ii) Causality condition: M is strongly asymptotically predictable

Then we have a bound on the change of the horizon area

δUAH1 =

∫
H1

HµUµ ≥ −ν(Qm,Q0, ℓ0, ℓ, ρ0)AH1

...
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The smeared null energy condition

...
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Null QEIs

Can we prove a QEI over a null geodesic?∫
dλ⟨:Tµν :U

µUν⟩ωf 2(λ) ≥ −A

∫
dλf ′(λ)2

The counterexample

Considered a sequence of vacuum-plus-two-particle states in which the
three-momenta of excited modes are unbounded and become more and more
parallel to the spatial part of the null vector Uµ. [Fewster, Roman, 2002]

Idea
In quantum field theory there is often an ultraviolet cutoff ℓUV which restricts
the three-momenta. We can write GN ⪅ ℓ2UV/N.

...
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The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in
four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨:Tµν :U
µUν⟩ωf 2(λ) ≥ −4B

GN
∥f ′∥2

What is B?
It is well-motivated to consider B ≪ 1. In order to saturate SNEC, we need to
saturate the inequality NGN ⪅ ℓ2UV. Not saturated in controlled constructions:
the UV cutoff of the theory is far from Planck scale

▶ ℓUV ≈ Planck length → B order 1 → A lot of negative energy allowed

▶ ℓUV ≫ Planck length → B small → A little negative energy allowed

...
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Null semiclassical singularity theorem
Semiclassical Einstein equation

8πGN⟨:Tµν :U
µUν⟩ω = RµνU

µUν

[Freivogel, E-AK, Krommydas, 2020]

(i) Energy condition∫
dλf 2(λ)RµνU

µUν ≥ −Q1||f ′||2 , Q1 = 32πB

and Rµνℓ
µℓν ≤ 0 holds for λ ∈ [−ℓ0, 0]

(ii) The mean normal curvature of P satisfies

H ≤ −ν(B, ℓ0, ℓ)

(iii) There exists a non-compact Cauchy surface.

⇒ The spacetime is null geodesically incomplete.

...
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Estimation of the mean normal curvature
Toy model of evaporating black holes

l
lo

P
Rs

Affine distance → Coordinate distance

▶ ℓ → yRs

▶ ℓ0 → xRs

Strategy: compare H of Schwarzschild geometry to ν(B, ℓ0, ℓ) from theorem

We want: Small x (P close to the horizon)

y

1
3

1

x

Q1=1

Q1=0.1

1/3

...
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Null semiclassical area theorem

Theorem [E-AK, Sacchi, 2023]

(i) Energy condition ∫
dλf 2(λ)RµνU

µUν ≥ −Q1||f ′||2

and RµνU
µUν ≥ ρ0 holds for λ ∈ [0, ℓ0]

(ii) Causality condition: M is strongly asymptotically predictable

Then

δUAH1 =

∫
H1

HµUµ ≥ −ν(B, ℓ0, ℓ, ρ0)AH1
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Estimation of evaporation rate

Evaporation rate for spherical black holes (α ∼ 2× 10−4)

νev = − 1

M

dM

dt
= (8π)3α

(
k

T 2
plℏ

)
T 3 .

...
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Evaporation rate for spherical black holes (α ∼ 2× 10−4)

νev = − 1

M

dM

dt
= (8π)3α

(
k

T 2
plℏ

)
T 3 .

Taking ℓ → ∞, optimizing in ℓ0 and

ρ0 ≈ −0.1
k4

ℏ3c3
T 4 .
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Estimation of evaporation rate

Evaporation rate for spherical black holes (α ∼ 2× 10−4)

νev = − 1

M

dM

dt
= (8π)3α

(
k

T 2
plℏ

)
T 3 .

Taking ℓ → ∞, optimizing in ℓ0 and

ρ0 ≈ −0.1
k4

ℏ3c3
T 4 .

we have from the theorem for spherical black holes

−δUAH

AH
= − 1

M

dM

dt
≤ νopt(B,T ) =

2
√
2π3

√
5

√
B

(
k

ℏTpl

)
T 2 .
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Estimation of evaporation rate

νev = − 1

M

dM

dt
= (8π)3α

(
k

T 2
plℏ

)
T 3 , νopt(B,T ) =

2
√
2π3

√
5

√
B

(
k

ℏTpl

)
T 2

3x1031 Tpl

T

νev

νopt
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Conclusions
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Conclusions and future work

▶ We can get versions of the classical theorems in semiclassical gravity by
replacing pointwise energy conditions with weaker ones

▶ Singularities are predicted semiclassically while the area theorem is easily
violated by quantum fields

Better null energy conditions? DSNEC∫
d2x±f 2(x±)⟨:T−−:⟩ω ≥ − N

(δ+)n/2−1(δ−)n/2+1

[Fliss, Freivogel, E-AK, 2021]
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