

Eleni-Alexandra Kontou TPPC 3 May 2023

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
•000000	000	00000000000	0000000	0000000	00

For students: focal points and how to find them

For students: rocal points and now to find them Introductio	n The classical theorems	weakened conditions	The smeared null energy condition	Conclusions
000000 000	00000000000	000000	000000	00

Focal points

Timelike geodesic normal to spacelike hypersurface S

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ で 3/38

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

Focal points

Timelike geodesic normal to spacelike hypersurface S

Focal point

A geodesic issuing normally from a spacelike hypersurface S and is continued past a focal point no longer locally extremizes length.

Focal points

Timelike geodesic normal to spacelike hypersurface S

Focal point

A geodesic issuing normally from a spacelike hypersurface S and is continued past a focal point no longer locally extremizes length.

- N: focal point
- AN equal to A'N
- ► ANB longer than A'CB

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q ○ 3/38</p>

Problem

Maximise proper time among timelike curves joining surface S to point q.

Problem

Maximise proper time among timelike curves joining surface S to point q.

Consider an 1-parameter family of smooth curves $\gamma_s: [0, \tau] \to M$

Problem

Maximise proper time among timelike curves joining surface S to point q.

Consider an 1-parameter family of smooth curves $\gamma_s: [0, \tau]
ightarrow M$

$$U^{\mu} = rac{\partial \gamma^{\mu}_{s}}{\partial t}, \qquad V^{\mu} = rac{\partial \gamma^{\mu}_{s}}{\partial s}$$

$$L[\gamma] = \int_0^\tau |\dot{\gamma}(t)| \, dt, \qquad |\dot{\gamma}(t)| = \sqrt{g_{\mu\nu} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu}} \\ \quad < \Box \succ < \Box \succ < \Xi \succ < \Xi \succ \qquad = 0 \text{ or } q_{4/38}$$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

The first variation of length

$$\left.\frac{dL[\gamma_s]}{ds}\right|_{s=0} = 0$$

The first variation of length

$$\left.\frac{dL[\gamma_s]}{ds}\right|_{s=0} = 0$$

The second variation of length (index form)

$$I[V] = \left. \frac{d^2 L[\gamma_s]}{ds^2} \right|_{s=0}$$

The first variation of length

$$\left.\frac{dL[\gamma_s]}{ds}\right|_{s=0} = 0$$

The second variation of length (index form)

$$I[V] = \left. \frac{d^2 L[\gamma_s]}{ds^2} \right|_{s=0}$$

Whether γ is, or is not, a local maximum of the length functional, amounts to the absence, or presence, of a focal point.

The first variation of length

$$\left. \frac{dL[\gamma_s]}{ds} \right|_{s=0} = 0$$

The second variation of length (index form)

$$I[V] = \left. \frac{d^2 L[\gamma_s]}{ds^2} \right|_{s=0}$$

Whether γ is, or is not, a local maximum of the length functional, amounts to the absence, or presence, of a focal point.

Focal point test $I[V] \ge 0$ for some $V^{\mu} \Longrightarrow \exists$ focal point in $(0, \tau]$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
0000000	000	00000000000	0000000	0000000	00

Null geodesics

Problem 1 L does not vary smoothly for all causal curves

Null geodesics

Problem 1 L does not vary smoothly for all causal curves

Energy or action integral

$$E[\gamma] = rac{1}{2} \int_0^\ell g(\gamma'(\lambda), \gamma'(\lambda)) d\lambda$$

Null geodesics

Problem 1 L does not vary smoothly for all causal curves

Energy or action integral

$$E[\gamma] = rac{1}{2} \int_0^\ell g(\gamma'(\lambda), \gamma'(\lambda)) d\lambda$$

The Hessian

$$\mathbf{H}[V] \equiv \frac{d^2 E[\gamma_s]}{ds^2}\Big|_{s=0}$$

Problem 2 How do we measure length? Fix parametrization on the hypersurface

Eleni-Alexandra Kontou TPPC 3 May 2023

Outline

For students: focal points and how to find them

Introduction

The classical theorems

Weakened conditions

The smeared null energy condition

Conclusions

Based on: 1907.13604, 2012.11569 and 2303.06788

For students: focal points and how to find then	n Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	•00	00000000000	0000000	000000	00

Introduction

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ ∽ へ ♡ _{9/38}

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

Motivation

 Classical relativity theorems: powerful predictions under general assumptions

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

Motivation

- Classical relativity theorems: powerful predictions under general assumptions
- These assumptions are usually violated in the semiclassical regime: quantum field effects become important

Motivation

- Classical relativity theorems: powerful predictions under general assumptions
- These assumptions are usually violated in the semiclassical regime: quantum field effects become important

Question

Which classical relativity theorems still hold in the semiclassical regime and what are the new assumptions?

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at least one incomplete geodesic.

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at least one incomplete geodesic.

- Quantum gravity: is believed that it will lead to a resolution of singularities
- Semiclassical gravity: are singularities predicted in that context?

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at least one incomplete geodesic.

- Quantum gravity: is believed that it will lead to a resolution of singularities
- Semiclassical gravity: are singularities predicted in that context?

Hawking area theorem

The area of the black hole horizon cannot decrease over time.

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at least one incomplete geodesic.

- Quantum gravity: is believed that it will lead to a resolution of singularities
- Semiclassical gravity: are singularities predicted in that context?

Hawking area theorem

The area of the black hole horizon cannot decrease over time.

Singularity theorems

Predict the existence of singularities: a spacetime is singular if it possesses at least one incomplete geodesic.

- Quantum gravity: is believed that it will lead to a resolution of singularities
- Semiclassical gravity: are singularities predicted in that context?

Hawking area theorem

The area of the black hole horizon cannot decrease over time.

Is the area theorem always violated semiclassically? Why?

Is there a weaker version of the theorem obeyed by quantum fields?

୬**୯** ବ୍ୟ _{11/38}

For students: focal points and how to find then	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
0000000	000	•0000000000	0000000	0000000	00

The classical theorems

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	0000000000	0000000	000000	00

1. The initial or boundary condition

There exists a trapped surface (null geodesics)

2. The energy condition

Restriction on the stress-energy tensor expressing "physical" properties of matter.

Null geodesics: Null energy condition (NEC) U^{μ} : null vector

2. The energy condition

Restriction on the stress-energy tensor expressing "physical" properties of matter.

Null geodesics: Null energy condition (NEC) U^{μ} : null vector

Physical form	Geometric form	Perfect fluid
$T_{\mu u}U^{\mu}U^{ u}\geq 0$	$R_{\mu u} U^\mu U^ u \geq 0$	$\rho + P \ge 0$

2. The energy condition

Restriction on the stress-energy tensor expressing "physical" properties of matter.

Null geodesics: Null energy condition (NEC) U^{μ} : null vector

Physical form	Geometric form	Perfect fluid
$T_{\mu u} U^\mu U^ u \geq 0$	$R_{\mu u}U^\muU^ u\geq 0$	$ ho + P \ge 0$

3. Causality condition

There is a Cauchy surface: spacelike hypersurface which intersects causal geodesics once and only once

2. The energy condition

Restriction on the stress-energy tensor expressing "physical" properties of matter.

Null geodesics: Null energy condition (NEC) U^{μ} : null vector

Physical form	Geometric form	Perfect fluid
$T_{\mu u} U^\mu U^ u \geq 0$	$R_{\mu u}U^\muU^ u\geq 0$	$ ho + P \geq 0$

3. Causality condition

There is a Cauchy surface: spacelike hypersurface which intersects causal geodesics once and only once

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 14/38

Proof structure

- 1. Initial condition: Geodesics start focusing
- 2. Energy condition: Focusing continues
- 3. Causality condition: No focal points
- $\Rightarrow \text{Geodesic incompleteness}$

1. Causality condition

The spacetime is strongly asymptotically predictable:

- No naked singularities
- Asymptotically flat
- There is an area with Cauchy surfaces

1. Causality condition

The spacetime is strongly asymptotically predictable:

- No naked singularities
- Asymptotically flat
- There is an area with Cauchy surfaces

Black hole: Area II (no null infinity) Event horizon: the boundary

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

2. The energy condition

The null convergence condition: $R_{\mu
u}U^{\mu}U^{
u}\geq 0$

2. The energy condition

The null convergence condition: $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$

Proof structure

- 1. Assume the area of the horizon decreases: the null geodesics normal to the horizon are focusing
- 2. Energy condition: Focusing continues
- 3. Causality condition: No focal points
- \Rightarrow The area of the horizon cannot decrease
Focal points

Definition

Let P be a co-dimension 2 spacelike submanifold and let γ be a causal geodesic normal to P. Then a focal point on γ is a point where the causal geodesic no longer extremizes the action integral.

Focal points

Definition

II^µ:shape tensor

Let P be a co-dimension 2 spacelike submanifold and let γ be a causal geodesic normal to P. Then a focal point on γ is a point where the causal geodesic no longer extremizes the action integral.

Energy or action integral

Focal points

Definition

Let P be a co-dimension 2 spacelike submanifold and let γ be a causal geodesic normal to P. Then a focal point on γ is a point where the causal geodesic no longer extremizes the action integral.

Energy or action integral

First derivative

II^µ:shape tensor

$$\frac{dE[\gamma_s]}{ds}\Big|_{s=0} = 0$$

The Hessian

$$\mathbf{H}[V] \equiv \frac{d^2 E[\gamma_s]}{ds^2}\Big|_{s=0}$$

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ のQ ⁰ 17/38

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy of	condition	Conclusions
000000	000	00000000000	0000000	0000000		00

Focusing theorem

$$\mathbf{H}[V] = \int_{0}^{\ell} \left[(\nabla_{U} V_{\mu}) (\nabla_{U} V^{\mu}) + R_{\mu\nu\alpha\beta} \underbrace{U^{\mu}}_{\text{variation}} V^{\alpha} U^{\beta} \right] d\lambda - U_{\mu} \mathbb{I}^{\mu} (V, V) \Big|_{\gamma(0)}$$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusion
000000	000	00000000000	0000000	0000000	00

Focusing theorem

$$\mathbf{H}[V] = \int_{0}^{\ell} \left[(\nabla_{U} V_{\mu}) (\nabla_{U} V^{\mu}) + R_{\mu\nu\alpha\beta} \underbrace{\mathcal{U}^{\mu}}_{\text{variation}} \underbrace{\mathcal{V}^{\nu}}_{\text{variation}} V^{\alpha} U^{\beta} \right] d\lambda - U_{\mu} \mathbb{I}^{\mu} (V, V) \Big|_{\gamma(0)}$$

Let e_i with i = 1, ..., n-2 be a tetrad basis on P, and parallel transport them along γ to generate $\{E_i\}_{i=1,...,n-2}$. Then, take f a smooth function with f(0) = 1 and $f(\ell) = 0$ and sum over i

$$\sum_{i=1}^{n-2} \mathbf{H}(f E_i, f E_i) = -\int_0^\ell \left((n-2) f'^2(\lambda) - f^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda - (n-2) f^2 U_{\mu} \mathrm{H}^{\mu} \Big|_{\gamma(0)}$$

 $H^{\mu}=1/(n-2)\sum_{i=1}^{n-2} \mathbb{I}^{\mu}(E_i,E_i)$ is the mean normal curvature vector field of P

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusion
000000	000	00000000000	0000000	0000000	00

Focusing theorem

$$\mathbf{H}[V] = \int_{0}^{\ell} \left[(\nabla_{U} V_{\mu}) (\nabla_{U} V^{\mu}) + R_{\mu\nu\alpha\beta} \underbrace{\mathcal{U}^{\mu}}_{\text{variation}} \underbrace{\mathcal{V}^{\nu}}_{\text{variation}} V^{\alpha} U^{\beta} \right] d\lambda - U_{\mu} \mathbb{I}^{\mu} (V, V) \Big|_{\gamma(0)}$$

Let e_i with i = 1, ..., n-2 be a tetrad basis on P, and parallel transport them along γ to generate $\{E_i\}_{i=1,...,n-2}$. Then, take f a smooth function with f(0) = 1 and $f(\ell) = 0$ and sum over i

$$\sum_{i=1}^{n-2} \mathbf{H}(f E_i, f E_i) = -\int_0^\ell \left((n-2) f'^2(\lambda) - f^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda - (n-2) f^2 U_{\mu} \mathrm{H}^{\mu} \Big|_{\gamma(0)}$$

 $H^{\mu} = 1/(n-2)\sum_{i=1}^{n-2} \mathbb{I}^{\mu}(E_i, E_i)$ is the mean normal curvature vector field of P

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ ▶ ミ のへで 18/38

Condition for the existence of focal points

- ▶ No focal point before q: H[V] > 0 for all V
- Focal point before q: $\mathbf{H}[V] < 0$ for some V

The Penrose singularity theorem

Theorem

- (i) M is globally hyperbolic with non-compact Cauchy hypersurfaces and P is a compact achronal smooth spacelike submanifold of M of co-dimension 2
- (ii) Let γ be a null geodesic emanating normally from P with tangent vector U^μ and let everywhere on γ

$$R_{\mu
u}U^{\mu}U^{
u}\geq 0$$

(iii) For the mean normal curvature vector field $H^{\mu} = H\hat{H}^{\mu}$ we have H < 0 \Rightarrow Then γ is incomplete and has length less than $\ell = 1/|H|$ where the affine parameter is fixed by requiring $H^{\mu}d\gamma_{\mu}/d\lambda = 1$ on P.

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	000000000000	0000000	0000000	00

Condition for the formation of a focal point

$$\int_0^\ell \left((n-2)f'(\lambda)^2 - f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda \leq -(n-2)H$$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	000000000000	0000000	0000000	00

Condition for the formation of a focal point

$$\int_0^\ell \left((n-2)f'(\lambda)^2 - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+ \right) d\lambda \le -(n-2)H$$

▶ Null convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	000000000000	0000000	0000000	00

Condition for the formation of a focal point

$$\int_0^\ell \left(\overbrace{(n-2)f'(\lambda)^2}^{(n-2)/\ell} - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+\right) d\lambda \le -(n-2)H$$

- ► Null convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$
- Choose a function $f(\lambda) = 1 \lambda/\ell$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	000000000000	0000000	0000000	00

Condition for the formation of a focal point

$$\int_0^\ell \big(\overbrace{(n-2)f'(\lambda)^2}^{(n-2)/\ell} - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+ \big) d\lambda \leq \overbrace{-(n-2)H}^{(n-2)|H|}$$

- ▶ Null convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$
- Choose a function $f(\lambda) = 1 \lambda/\ell$
- Trapped surface H < 0
- \Rightarrow Focal point for $\ell \geq 1/|\textit{H}|$

Condition for the formation of a focal point

$$\int_0^\ell \Big(\overbrace{(n-2)f'(\lambda)^2}^{(n-2)/\ell} - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+ \Big) d\lambda \leq \overbrace{-(n-2)H}^{(n-2)|H|}$$

- ▶ Null convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$
- Choose a function $f(\lambda) = 1 \lambda/\ell$
- Trapped surface H < 0</p>
- \Rightarrow Focal point for $\ell \geq 1/|{\it H}|$

Condition (i) implies the P-normal null geodesics have no focal points and thus they have length at most $\ell.$

The Hawking area theorem

Theorem

- (i) *M* is
 strongly asymptotically predictable
 (ii) Evenwhere on *M* and for all null
- (ii) Everywhere on M and for all null vectors U^{μ}

 $R_{\mu
u}U^{\mu}U^{
u}\geq 0$

Let Σ_1 and Σ_2 be spacelike Cauchy surfaces for the globally hyperbolic region \tilde{V} such that $\Sigma_2 \subset I^+(\Sigma_1)$, and given H the event horizon we define

$$\mathscr{H}_1 = H \cap \Sigma_1, \qquad \mathscr{H}_2 = H \cap \Sigma_2.$$

Then the area of \mathscr{H}_2 is greater or equal than the area of \mathscr{H}_1 .

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	0000000000	0000000	0000000	00

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy cond	dition Con	clusions
000000	000	0000000000	0000000	0000000	00	

$$\int_0^\ell \big(\overbrace{(n-2)f'(\lambda)^2}^{(n-2)\ell} - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+ \big) d\lambda \leq -(n-2)U_{\mu}H^{\mu}$$

- Null convergence condition $R_{\mu\nu}U^{\mu}U^{\nu} \ge 0$
- Choose a function $f(\lambda) = 1 \lambda/\ell$ If $U_{\mu}H^{\mu} < 0$ for \mathscr{H}_1 we have a focal point for $\ell \ge 1/|U_{\mu}H^{\mu}|$.

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy cond	dition Con	clusions
000000	000	0000000000	0000000	0000000	00	

$$\int_0^\ell \big(\overbrace{(n-2)f'(\lambda)^2}^{(n-2)/\ell} - \overbrace{f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu}}^+ \big) d\lambda \le -(n-2)U_{\mu}H^{\mu}$$

 Null convergence condition R_{µν} U^µ U^ν ≥ 0
 Choose a function f(λ) = 1 − λ/ℓ If U_µH^µ < 0 for ℋ₁ we have a focal point for ℓ ≥ 1/|U_µH^µ|.

Condition (i) implies there are no focal points on the null generators so $U_{\mu}H^{\mu}\geq 0.$

$$\delta_{\mathcal{U}}\mathcal{A}_{\mathscr{H}_{1}}=\int_{\mathscr{H}_{1}}\mathrm{H}^{\mu}\mathcal{U}_{\mu}\geq0$$

<ロ > < 母 > < 目 > < 目 > 目 の へ C 22/38

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	000000	0000000	00

Weakened conditions

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	000000	0000000	00

Problem

All pointwise energy conditions are violated by quantum fields

Problem

All pointwise energy conditions are violated by quantum fields

QFT

Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude and duration of any negative energy densities or fluxes within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

$$\int dt \, f^2 \langle : T_{\mu
u} U^\mu U^
u :
angle_\omega \geq -rac{1}{16\pi^2} \int f''(t)^2 dt$$

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Problem

All pointwise energy conditions are violated by quantum fields

QFT

Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude and duration of any negative energy densities or fluxes within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

$$rac{1}{t_0}\int dt\, f^2\langle:T_{\mu
u}\,U^\mu\,U^
u:
angle_\omega\geq -rac{C}{t_0^4}$$

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Problem

All pointwise energy conditions are violated by quantum fields

QFT

Quantum energy inequalities (QEIs) introduce a restriction on the possible magnitude and duration of any negative energy densities or fluxes within a quantum field theory.

Example of a QEI (bound on energy density in Minkowski spacetime)

$$\frac{1}{t_0}\int dt\,f^2\langle:T_{\mu\nu}\,U^\mu\,U^\nu:\rangle_\omega\geq-\frac{C}{t_0^4}$$

[Ford, Roman, 1995], [Fewster, Eveson, 1998]

Weakened condition inspired by QEIs

$$\int f(t)^2 R_{\mu\nu} U^{\mu} U^{\nu} dt \ge -Q_m \|f^{(m)}\|^2 - Q_0 \|f\|^2$$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	000000	0000000	00

The rest of the talk

- 1. Singularity theorems with weakened conditions inspired by QEIs
- 2. A null QEI: the smeared null energy condition
- 3. Semiclassical theorems and applications: evaporating black holes

Singularity theorems with weaker conditions

Theorem [Fewster, E-AK, 2019]

(i) Energy condition

$$\int_0^\ell f(\lambda)^2 \overbrace{\mathcal{R}_{\mu
u}U^\mu U^
u}^
ho d\lambda \geq -Q_m \|f^{(m)}\|^2 - Q_0 \|f\|^2$$

and Scenario 1: $\rho \ge \rho_0$ for $[0, \ell_0]$: NEC obeyed after we measure H or Scenario 2: $\rho < -\rho_0$ for $[-\ell_0, 0]$: NEC violated before we measure H

- (ii) Initial condition: $H \leq -\nu(Q_m, Q_0, \ell_0, \ell, \rho_0)$
- (iii) Causality condition: There exists a non-compact Cauchy surface.
- \Rightarrow The spacetime is null geodesically incomplete.

Condition for the formation of a focal point

$$\int_0^\ell \left((n-2)f'(\lambda)^2 - f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda \le -(n-2)H, f(0) = 1, f(\ell) = 0$$

Energy condition

$$\int_0^\ell f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu} d\lambda \ge -Q_m \|f^{(m)}\|^2 - Q_0 \|f\|^2, f(0) = f(\ell) = 0$$

Condition for the formation of a focal point

$$\int_0^\ell \left((n-2)f'(\lambda)^2 - f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu} \right) d\lambda \le -(n-2)H, f(0) = 1, f(\ell) = 0$$

Energy condition

 $\int_0^\ell (\phi(\lambda)f(\lambda))^2 R_{\mu\nu} U^{\mu} U^{\nu} d\lambda \ge -Q_m \|(\phi f)^{(m)}\|^2 - Q_0 \|(\phi f)\|^2, (\phi f)(0) = (\phi f)(\ell) = 0$

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

- Pick functions for general m
- Optimize for m = 1

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	00

Pick functions for general m

• Optimize for m = 1

$$H\leq -
u(\mathcal{Q}_m,\mathcal{Q}_0,\ell_0,\ell,
ho_0)$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 27/38

Question

What is the weakest energy condition so that the classical area theorem holds?

Question

What is the weakest energy condition so that the classical area theorem holds?

Observation

We need to have a focal point for $U_{\mu}H^{\mu}<0$ to conclude the non-decrease of the horizon. Then

$$\int_0^\ell f(\lambda)^2 R_{\mu\nu} U^{\mu} U^{\nu} d\lambda \ge (n-2) \|f'\|^2$$

Question

What is the weakest energy condition so that the classical area theorem holds?

Observation

We need to have a focal point for $U_{\mu}H^{\mu}<0$ to conclude the non-decrease of the horizon. Then

$$\int_0^\ell f(\lambda)^2 R_{\mu\nu} U^\mu U^\nu d\lambda \ge (n-2) \|f'\|^2$$

Example of such a condition: Half averaged null energy condition

$$\int_0^\infty R_{\mu\nu} U^\mu U^\nu d\lambda \ge 0$$

[Lesourd, 2017]

Question

What happens if we have a condition inspired by QEIs?

Question

What happens if we have a condition inspired by QEIs?

Theorem [E-AK, Sacchi, 2023]

(i) Energy condition

$$\int_0^\ell f(\lambda)^2 \overbrace{\mathcal{R}_{\mu
u}U^\mu U^
u}^
ho d\lambda \geq -Q_m \|f^{(m)}\|^2 - Q_0 \|f\|^2$$

and Scenario 1: $\rho \ge \rho_0$ for $[0, \ell_0]$

(ii) Causality condition: M is strongly asymptotically predictable Then we have a bound on the change of the horizon area

$$\delta_{U}\mathcal{A}_{\mathscr{H}_{1}}=\int_{\mathscr{H}_{1}}\mathrm{H}^{\mu}\,U_{\mu}\geq-\nu(\mathcal{Q}_{m},\mathcal{Q}_{0},\ell_{0},\ell,\rho_{0})\mathcal{A}_{\mathscr{H}_{1}}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	•000000	00

The smeared null energy condition

Null QEIs

Can we prove a QEI over a null geodesic?

$$\int d\lambda \langle : T_{\mu
u} : U^{\mu} U^{
u}
angle_{\omega} f^2(\lambda) \geq -A \int d\lambda f'(\lambda)^2$$

Null QEIs

Can we prove a QEI over a null geodesic?

$$\int d\lambda \langle: \mathcal{T}_{\mu
u} : \mathcal{U}^{\mu} \mathcal{U}^{
u}
angle_{\omega} f^2(\lambda) \geq -A \int d\lambda f'(\lambda)^2$$

The counterexample

Considered a sequence of vacuum-plus-two-particle states in which the three-momenta of excited modes are unbounded and become more and more parallel to the spatial part of the null vector U^{μ} . [Fewster, Roman, 2002]

Null QEIs

Can we prove a QEI over a null geodesic?

$$\int d\lambda \langle: \mathcal{T}_{\mu
u} : \mathcal{U}^{\mu} \, \mathcal{U}^{
u}
angle_{\omega} f^2(\lambda) \geq - A \int d\lambda f'(\lambda)^2$$

The counterexample

Considered a sequence of vacuum-plus-two-particle states in which the three-momenta of excited modes are unbounded and become more and more parallel to the spatial part of the null vector U^{μ} . [Fewster, Roman, 2002]

Idea

In quantum field theory there is often an ultraviolet cutoff $\ell_{\rm UV}$ which restricts the three-momenta. We can write $G_N \lessapprox \ell_{\rm UV}^2/N$.
The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu
u} : U^{\mu} U^{
u}
angle_{\omega} f^2(\lambda) \geq -rac{4B}{G_N} \|f'\|^2$$

The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu
u} : U^{\mu} U^{
u}
angle_{\omega} f^2(\lambda) \geq -rac{4B}{G_N} \|f'\|^2$$

What is B?

It is well-motivated to consider $B \ll 1$. In order to saturate SNEC, we need to saturate the inequality $NG_N \lesssim \ell_{\rm UV}^2$. Not saturated in controlled constructions: the UV cutoff of the theory is far from Planck scale

The smeared null energy condition

Smeared null energy condition (SNEC) for the minimally coupled scalar field in four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]

$$\int d\lambda \langle : T_{\mu
u} : U^{\mu} U^{
u}
angle_{\omega} f^2(\lambda) \geq -rac{4B}{G_N} \|f'\|^2$$

What is B?

It is well-motivated to consider $B \ll 1$. In order to saturate SNEC, we need to saturate the inequality $NG_N \lessapprox \ell_{\rm UV}^2$. Not saturated in controlled constructions: the UV cutoff of the theory is far from Planck scale

- ▶ $\ell_{\rm UV} \approx$ Planck length \rightarrow *B* order 1 \rightarrow A lot of negative energy allowed
- ▶ $\ell_{\rm UV} \gg$ Planck length \rightarrow *B* small \rightarrow A little negative energy allowed

Null semiclassical singularity theorem

Semiclassical Einstein equation

 $8\pi G_N \langle :T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\omega} = R_{\mu\nu} U^{\mu} U^{\nu}$

Null semiclassical singularity theorem

Semiclassical Einstein equation

$$8\pi G_N \langle : T_{\mu\nu} : U^{\mu} U^{\nu} \rangle_{\omega} = R_{\mu\nu} U^{\mu} U^{\nu}$$

[Freivogel, E-AK, Krommydas, 2020]

(i) Energy condition

$$\int d\lambda f^2(\lambda) R_{\mu
u} U^{\mu} U^{
u} \geq -Q_1 ||f'||^2, \quad Q_1 = 32\pi B$$

and $R_{\mu\nu}\ell^{\mu}\ell^{\nu} \leq 0$ holds for $\lambda \in [-\ell_0, 0]$

(ii) The mean normal curvature of P satisfies

$$H \leq -\nu(B, \ell_0, \ell)$$

■ ▶ ▲ Ē ▶ Ē · ' 의 Q (P 33/38

(iii) There exists a non-compact Cauchy surface.

 \Rightarrow The spacetime is null geodesically incomplete.

Estimation of the mean normal curvature

Toy model of evaporating black holes

Affine distance \rightarrow Coordinate distance

•
$$\ell \to yR_s$$

▶ $\ell_0 \rightarrow xR_s$

Strategy: compare H of Schwarzschild geometry to $\nu(B, \ell_0, \ell)$ from theorem

Estimation of the mean normal curvature

Toy model of evaporating black holes

Affine distance \rightarrow Coordinate distance

•
$$\ell \to yR_s$$

▶ $\ell_0 \rightarrow xR_s$

Strategy: compare *H* of Schwarzschild geometry to $\nu(B, \ell_0, \ell)$ from theorem We want: Small *x* (*P* close to the horizon)

Estimation of the mean normal curvature

Toy model of evaporating black holes

Affine distance \rightarrow Coordinate distance

•
$$\ell \to yR_s$$

▶ $\ell_0 \rightarrow xR_s$

Strategy: compare *H* of Schwarzschild geometry to $\nu(B, \ell_0, \ell)$ from theorem We want: Small x (*P* close to the horizon)

Null semiclassical area theorem

Theorem [E-AK, Sacchi, 2023]

(i) Energy condition

$$\int d\lambda f^2(\lambda) {
m extsf{R}}_{\mu
u} U^\mu U^
u \geq - Q_1 ||f'||^2$$

and $R_{\mu\nu}U^{\mu}U^{\nu} \ge
ho_0$ holds for $\lambda \in [0, \ell_0]$

(ii) Causality condition: *M* is strongly asymptotically predictable Then

$$\delta_{\mathcal{U}}\mathcal{A}_{\mathscr{H}_1} = \int_{\mathscr{H}_1} \mathrm{H}^{\mu} U_{\mu} \geq -
u(B, \ell_0, \ell,
ho_0) \mathcal{A}_{\mathscr{H}_1}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 35/38

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	000000	00

Evaporation rate for spherical black holes ($\alpha \sim 2 \times 10^{-4}$)

$$u_{
m ev} = -rac{1}{M}rac{dM}{dt} = (8\pi)^3 lpha \left(rac{k}{T_{
m pl}^2 \hbar}
ight) T^3 \,.$$

Evaporation rate for spherical black holes ($\alpha \sim 2 \times 10^{-4})$

$$u_{\mathsf{ev}} = -rac{1}{M}rac{dM}{dt} = (8\pi)^3 lpha \left(rac{k}{T_{\mathsf{pl}}^2 \hbar}
ight) T^3 \, .$$

Taking $\ell \to \infty,$ optimizing in ℓ_0 and

$$ho_0 pprox -0.1 rac{k^4}{\hbar^3 c^3} T^4$$

Evaporation rate for spherical black holes ($lpha \sim 2 imes 10^{-4}$)

$$u_{
m ev} = -rac{1}{M}rac{dM}{dt} = (8\pi)^3 lpha \left(rac{k}{T_{
m pl}^2 \hbar}
ight) T^3 \,.$$

Taking $\ell \to \infty,$ optimizing in ℓ_0 and

$$ho_0pprox -0.1rac{k^4}{\hbar^3c^3}\,T^4\,.$$

we have from the theorem for spherical black holes

$$-rac{\delta_U \mathcal{A}_{\mathscr{H}}}{\mathcal{A}_{\mathscr{H}}} = -rac{1}{M}rac{dM}{dt} \leq
u_{\mathsf{opt}}(B,T) = rac{2\sqrt{2\pi^3}}{\sqrt{5}}\sqrt{B}\left(rac{k}{\hbar T_{\mathsf{pl}}}
ight)T^2\,.$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ● ⑦ Q ○ 36/38

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	000000	00

$$\nu_{ev} = -\frac{1}{M} \frac{dM}{dt} = (8\pi)^3 \alpha \left(\frac{k}{T_{pl}^2 \hbar}\right) T^3, \quad \nu_{opt}(B,T) = \frac{2\sqrt{2\pi^3}}{\sqrt{5}} \sqrt{B} \left(\frac{k}{\hbar T_{pl}}\right) T^2$$

$$- \nu_{ev}$$

$$- \nu_{ev}$$

$$- \nu_{opt}$$

For students: focal points and how to find them. In	ntroduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
0000000 0	000	00000000000	0000000	0000000	•0

Conclusions

For students: focal points and how to find them	Introduction	The classical theorems	Weakened conditions	The smeared null energy condition	Conclusions
000000	000	00000000000	0000000	0000000	0.

Conclusions and future work

We can get versions of the classical theorems in semiclassical gravity by replacing pointwise energy conditions with weaker ones

Conclusions and future work

- We can get versions of the classical theorems in semiclassical gravity by replacing pointwise energy conditions with weaker ones
- Singularities are predicted semiclassically while the area theorem is easily violated by quantum fields

Conclusions and future work

- We can get versions of the classical theorems in semiclassical gravity by replacing pointwise energy conditions with weaker ones
- Singularities are predicted semiclassically while the area theorem is easily violated by quantum fields

Better null energy conditions? DSNEC

$$\int d^2 x^{\pm} f^2(x^{\pm}) \langle : \mathcal{T}_{--} : \rangle_{\omega} \geq -\frac{\mathcal{N}}{(\delta^+)^{n/2-1} (\delta^-)^{n/2+1}}$$

[Fliss, Freivogel, E-AK, 2021]