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Black Holes Exist
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Lower mass for an Astrophysical Black Hole ~ .M⊙
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Primordial Black Holes
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Primordial Black Hole (PBH) first proposed in:

Hypothesis is that PBH form from fluctuations 
in the Early Universe if sufficiently dense.

Rich literature of possible formation scenarios, 
many tied to specific models of cosmology.

Also, a possible dark matter candidate if they 
account for the full present day abundance:
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Limits on Primordial Black Holes
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Limits on Primordial Black Holes

Pluto Earth Jupiter Sun951 GaspraHalley Comet
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Limits on Primordial Black Holes

Pluto Earth Jupiter Sun951 GaspraHalley Comet

Can be 100%  
of dark matter

Also interesting range with 
PBH ~1% of dark matter
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The OGLE Excess

Indeed, there is a tentative unexplained excess in microlensing events seen by the 
OGLE telescope consistent indicative of PBH population with

;

 H. Niikura, et al. PRD 99 (2019) 8, 083503 
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II. Signals for Primordial Black Holes



Simplest possibility is WIMP and parameterise cross section with expansion:

If fPBH ≠ 1 (as with OGLE) we  still need to reproduce the observed dark matter.

Natural to suppose with new particle dark matter.

PBH fraction:

Thermal Dark Matter
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p-wave: and implies 

d-wave:

s-wave:   then for need

  is the leading term; impliesσd

If fPBH ≠ 1 (as with OGLE) we  still need to reproduce the observed dark matter.

Natural to suppose

PBH fraction:

Simplest possibility is WIMP and parameterise cross section with expansion:

with new particle dark matter.

Thermal Dark Matter
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x−1 ∝ T ∝ v2with
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Giacchino, et al [1307.6480].
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The density profile evolves and at late time is characteristically  (Bertschinger 1985)ρ(r) ∝ r−9/4

For PBHs formed before kinetic decoupling, a dark matter halo of constant density this is 
equal to the background dark matter at kinetic decoupling: .ρ(tkd) = ρcΩpDMmχ /(xkdT0)

The PBH Halo

The particle dark matter with generically form a dense halo around the PBH.
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The density profile evolves and at late time is characteristically  (Bertschinger 1985)ρ(r) ∝ r−9/4

For PBHs formed before kinetic decoupling, a dark matter halo of constant density this is 
equal to the background dark matter at kinetic decoupling: .ρ(tkd) = ρcΩpDMmχ /(xkdT0)

The PBH Halo

More carefully, it is determined by some complicated integral:

Boudaud et al [2106.07480]

The particle dark matter with generically form a dense halo around the PBH.
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The density profile evolves and at late time is characteristically  (Bertschinger 1985)ρ(r) ∝ r−9/4

For PBHs formed before kinetic decoupling, a dark matter halo of constant density this is 
equal to the background dark matter at kinetic decoupling: .ρ(tkd) = ρcΩpDMmχ /(xkdT0)

The PBH Halo

More carefully, it is determined by some complicated integral:

Boudaud et al [2106.07480]

The particle dark matter with generically form a dense halo around the PBH.

Evaluate in light/intermediate/heavy regime:
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For an intermediate mass PBH (assuming halo evolution only due to gravity) 
an example halo density profile is:
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The PBH Halo
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Diagram shows the scaling for different PBH masses at different scales.



Other phenomena can alter this picture. For instance particle dark matter 
annihilations will deplete the centre which is high density.

The annihilation rate is:

Depleted central density reaches
 a maximum density

Eroshenko [1607.00612]

Annihilations in the Core

   
   

  

James Unwin10/30II. Signals from PBH



Other phenomena can alter this picture. For instance particle dark matter 
annihilations will deplete the centre which is high density.
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The annihilation rate is:

Depleted central density reaches
 a maximum density

s-wave

Eroshenko [1607.00612]

Annihilations in the Core
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The maximum density core depends on the cross section

More generally

which may be velocity dependent.

Note, velocity changes throughout the halo

s-wave case implies constant density.

leading to interesting halo profiles.

Annihilations in the Core
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The maximum density core depends on the cross section

More generally

which may be velocity dependent.

Note, velocity changes throughout the halo

s-wave case implies constant density.

leading to interesting halo profiles.

Annihilations in the Core
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Density core cuts out some scaling. For the s-wave case:

Annihilations in the Core
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each PBH will have encountered Typical spacing of stars is 0.01pc in bulge

For galactic PBH close encounters with stars strip the exterior of the PBH’s dark matter halo 

stars 

Halo Stripping
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each PBH will have encountered Typical spacing of stars is 0.01pc in bulge

Suppose stars form a regular square lattice with l = 10−2 pc spacings, then closest encounter:

stars 

By        it follows that the terminal radius for the PBH halo is:

Halo Stripping

   
   

  

James Unwin13/30II. Signals from PBH

For galactic PBH close encounters with stars strip the exterior of the PBH’s dark matter halo 



Stripping will alter the halo, assuming PBH in the bulge:

Halo Stripping
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Extragalactic -ray sources may not have been significantly stripped, leads to stronger limits.γ



For extragalactic -ray flux need to integrate over zγ

Extragalactic -ray background gives leading constraints.γ

Annihilations Signals
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Annihilation rate with

Energy distribution (Cembranos [1009.4936])

Annihilations Signals

Optical depth (Cirelli, et al [1012.4515])

z-dependance is complicated depends on dark 
matter velocity dependance and PBH mass.
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For extragalactic -ray flux need to integrate over zγ

Extragalactic -ray background gives leading constraints.γ
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z-dependance is complicated depends on dark 
matter velocity dependance and PBH mass.

For extragalactic -ray flux need to integrate over zγ

Extragalactic -ray background gives leading constraints.γ
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Fermi Extragalactic Flux

Data: Fermi collab., arXiv:1501.05464]. 

Compare the estimated flux to the Fermi-LAT observations of extragalactic -rays.γ

Find the maximum PBH abundance  such that do not exceed -ray background. fPBH < fMAX γ
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10−7 10−7



Plot   such that  as function of PBH mass  for s/p/d wave annihilating DM:fMAX fPBH < fMAX M∙
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Limits on Annihilations around PBH
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For p-wave this assumes s-wave contribution is exactly zero (see paper for full case).
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High Inclination TNOs

First hint of a new object in our Solar System comes from observations of  

unexpected Trans-Neptunian Objects (TNOs) with high inclinations.

Batygin, et al [arXiv:1902.10103].
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TNO Anomalies

A second hint is observation of TNO clustering.

Batygin, et al [arXiv:1902.10103].
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TNO Anomalies

A second hint is observation of TNO clustering.

Batygin, et al [arXiv:1902.10103].

Indicative of new planet with:
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Neptune predicted in 1846 from irregularities in the orbit of Uranus.

Unexpected Objects

20/30

Could TNO orbits be hinting at a Ninth Planet?

III. Anomalous Orbits in our Solar System
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Origins of Planet 9

Batygin, et al [arXiv:1902.10103].
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Origins of Planet 9

Batygin, et al [arXiv:1902.10103].Batygin, et al [arXiv:1902.10103].
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Origins of Planet 9

Batygin, et al [arXiv:1902.10103].
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A Tale of Two Anomalies 

22/30III. Anomalous Orbits in our Solar System

Recall, TNO orbits indicative of new planet with:
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A Tale of Two Anomalies 

22/30

Remarkable coincidence of masses!

OGLE microlensing hinting at PBH with

Recall, TNO orbits indicative of new planet with:

III. Anomalous Orbits in our Solar System

Could there be an “OGLE” PBH 
captured in our Solar System?
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How many “OGLE” PBH?

Consider the OGLE PBH population ;

Since they constitute a fraction of local dark matter:

The number density of PBH locally is given by

23/30III. Anomalous Orbits in our Solar System
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How many “OGLE” PBH?

Consider the OGLE PBH population ;

Since they constitute a fraction of local dark matter:

This implies the local number density is

The number density of PBH locally is given by

Roughly ~35 PBH per star in our region of the galaxy. 

23/30III. Anomalous Orbits in our Solar System
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Catching a PBH

24/30

With the indicated PBH parameters form OGLE

;

How likely are you to “catch” a PBH vs a planet?

III. Anomalous Orbits in our Solar System
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Catching a PBH

24/30

With the indicated PBH parameters form OGLE

;

How likely are you to “catch” a PBH vs a planet?

where  are the velocity dispersions for each set of objects.σ

Relative capture rate:

If we find that  then the PBH hypothesis dead by Occam’s razor. ≪ 1

ΓBH

ΓFFP
∼

nBH

nFFP ( σFFP

σBH )
3

Goulinski and Ribak [1705.10332].  
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Catching a PBH

25/30

Drukier, Freese, and Spergel,  Phys. Rev. D 33 (1986) 3495.  

The PBH velocity distribution is taken to be the same as the dark matter 
velocity dispersion                   km/s and recall for OGLE PBH:

Free Planets have different velocity dispersion
and their number density is estimated to be

Goulinski and Ribak [1705.10332].  

σPBH ∼ 160

σFFP ∼ 40 km/s
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Catching a PBH

25/30

Scholtz & Unwin, PRL 125 (2020) 5, 051103

Putting this together for ”OGLE” PBH one estimates that

Thus we need not immediately discard the prospect of PBH capture.

-

Drukier, Freese, and Spergel,  Phys. Rev. D 33 (1986) 3495.  

The PBH velocity distribution is taken to be the same as the dark matter 
velocity dispersion                   km/s and recall for OGLE PBH:

Free Planets have different velocity dispersion
and their number density is estimated to be

Goulinski and Ribak [1705.10332].  

σPBH ∼ 160

σFFP ∼ 40 km/s
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Dark Matter Story

YIR
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26/30III. Anomalous Orbits in our Solar System

To evade detection we consider Freeze-in 
dark matter. The relic density scales as

Since fPBH ≠ 1 we  require some particle dark matter.
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Dark Matter Story

Parametrically  

With these benchmark values it implies an annihilation cross section

The coupling g is largely unfixed.

26/30III. Anomalous Orbits in our Solar System

To evade detection we consider Freeze-in 
dark matter. The relic density scales as

YIR
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Since fPBH ≠ 1 we  require some particle dark matter.
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     is the average number of photons per DM annihilation. We take:

The photon flux from annihilation in a distribution a distance r9 from Earth:

27/30III. Anomalous Orbits in our Solar System

Dark Matter Story
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     is the average number of photons per DM annihilation. We take:

The smallest detectable in 8 year FERMI-LAT catalog was J2143.0-5501 with

And satisfied in freeze-in model:

The photon flux from annihilation in a distribution a distance r9 from Earth:

Dark Matter Story

Since                                                  , this implies a limit:
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Searching in our Solar System

28/30

Search for accretion flares from impacts of 
small Oort cloud objects. LSST projection:
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Searching in our Solar System

28/30

Search for accretion flares from impacts of 
small Oort cloud objects. LSST projection:
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Breakthrough Starshot Project

Searching in our Solar System
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Breakthrough Starshot Project

Hoang & Loeb (2020) AJ. Lett., 895, L35,

Breakthrough Starshot aims to use lasers to 
accelerate gram mass spacecraft to 0.2c

Holman, Payne 2016 AJ 152 94
Standish 1993 AJ  105 5

Already studies of Cassini, Pioneer, Voyager 
place limits on the Planet 9 orbit

Aim is to reach study nearby stars and exoplanets.

Studying small deviations of craft in path through 
solar system can constrain new large bodies.

Care is needed with noise from density and 
magnetic fluctuations at edge of Solar System

Searching in our Solar System

III. Anomalous Orbits in our Solar System



There is tentative evidence from TNO orbits for an extra body orbiting the sun.

Primordial Black Holes are fascinating hypothetical astrophysical bodies.

Conclusions

Detection of a PBH would give insights on cosmology & fundamental physics.

Scenarios with both particle dark matter and PBH can have enhanced signals.

Many upcoming experiments will continue the search for PBH. 

New Scientist. 31 March 2021
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Bird et al arxiv: 2203.08967
Blue: Current constraints

Gold: Future constraints

Future Limits on PBH
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For p-wave processes to be dominant at freeze-out one requires a suppression of order 

In p-wave model, one expects the s-wave channel is non-zero but negligible at freeze-out.

Simple models can readily give suppressions of

Bell et al. 1705.01105

Suppression factors also arise when 2 2 is p-wave but 2 3 is s-wave, recall d-wave case, 
also for p-wave model:

→ →

Mixed s-wave/p-wave

Extra Slides



James Unwin

ℱ = 10-3

ℱ = 10-6

-16 -14 -12 -10 -8

-4

-3

-2

-1

0

1

log10r (in AU)

<
σ
v(
r)
>
/<
σ
v>

F
O

M● = 10
-10

M⊙

-15 -10 -5 0
-20

-15

-10

-5

log10r(AU)

lo
g
1
0
[ρ

(g
/c
m

3
)]

mχ = 1 TeV

M●= 10- 6
M⊙

s-wave

p-
w

ave

Mixed p-wave

~ r
-9/4

Thus cross section varies with radius, plateau indicates s-wave dominance.

The dark matter velocity in the halo is not the velocity at freeze-out, but velocity varies within halo 

Implies at some critical radius expect dominant process to switch from s-wave to p-wave.

Mixed s-wave/p-wave

Extra Slides
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Accordingly, realistic p-wave models have limits far closer to s-wave models.

Mixed s-wave/p-wave

Solid: , Dotted: s-wave, Dashed p-wave.ℱ = 10−3

Extra Slides
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Redshift dependance of        can complicated.

Comes from fact that over time  changes due to annihilationsρ = ρ(z)

Similarly stripping events occur over time.

Thus the halos evolve. For different scenarios redshift dependance changes.

Parameterise where and x is to be determined.

For light and heavy PBH one has

Annihilation Rate
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Cirelli, et al [1012.4515]

Optical Depth

Optical depth parameterises absorption at different redshifts

James UnwinExtra Slides



Energy Spectrum

Cembranos [1009.4936]

Fitting from Pythia:

For quarks and leptons, energy spectrum can be parameterised

James UnwinExtra Slides



Prospect of Nearby PBH

Prospect of nearby PBH could be great,

 even with small .fPBH

nPBH

n*
∼

1
n* ( fPBHρDM

MPBH )

Recall for the OGLE PBH population ;

The number of nearby PBH was:

Ignoring OGLE excess, the value could be much higher:

James UnwinExtra Slides



PBH Formation

For PBH formation, require densities at least the mean inside the BH horizon ρc ∼

The mass of the resulting PBHs should be of the order of the horizon mass at that time 
i.e., the mass within a region of the size of the Hubble horizon

Since the PBH mass is roughly the horizon mass, fluctuations entering the horizon can collapse into PBHs.

Villanueva-Domingo 2103.12087
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