
Unitarity and clock dependence in quantum
cosmology

Steffen Gielen, University of Sheffield

24 May 2023

joint work with Lućıa Menéndez-Pidal:
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Relational clocks and problem of time Unitarity and clock dependence in quantum cosmology

Relational clocks in classical GR

“What is observable in classical and quantum gravity?” [Rovelli 1991]

Due to diffeomorphism symmetry, there is no meaningful way to identify spacetime
points by coordinates: the Ricci scalar R(x0) at a point identified by coordinates
x0 is not an observable quantity.

Similarly, in cosmology cannot ask “what was the spatial curvature of the
Universe at t = 0?”

The (ADM) Hamiltonian in GR generates gauge transformations ⇒ observable
(gauge-invariant) quantities must be constants of motion (e.g., [Unruh & Wald 1989])

Way out: material reference systems which label spacetime points not by
arbitrary coordinates but by the values taken by reference matter fields:
“Matter energy density when φ = φ0” is observable (and a constant of motion!)
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Problem of time in canonical quantum gravity
In classical cosmology we can choose a time coordinate. Consider, e.g., a
cosmological model of a flat FLRW universe with a free massless scalar field ϕ,
with Hamiltonian

H = N

(
−2πG

3

p2a
a

+
p2ϕ
2a3

)
where N is the lapse. We can set N = 1 (for example) and compute time
evolution

da

dt
= {a,H}, etc.,

and we obtain the full solution (starting from initial data that satisfies H = 0)
expressed in a specific gauge.

However, the quantum theory does not contain this gauge-dependent information:
since H needs to vanish quantum states are frozen.

Ĥ|ψ⟩ = 0 ⇒ eiĤt|ψ⟩ = |ψ⟩
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Problem of time in canonical quantum gravity

We can pick an internal time, specified by a suitable degree of freedom (e.g., a
reference scalar field). This is in general not possible globally, as the clock might
not be monotonic everywhere. Even if it is, there are basic questions:

• How to specify an inner product for the quantum theory? Should we require a
probability interpretation and unitarity of the theory?

• If there are multiple candidate clocks, are theories defined with respect to
different clocks equivalent?

One approach to these issues is Dirac quantisation where we first specify a
kinematical inner product and construct the physical inner product through group
averaging. Here one can show equivalence of theories defined for different clocks
in a wide class of systems [Höhn, Smith & Lock 2021]. We will see an example where
this equivalence does not hold, so that the above questions seem to remain open.
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Outline

1. Relational clocks and problem of time

2. The cosmological model

3. Three different quantum theories

4. Numerical analysis
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The cosmological model
We consider a homogeneous, isotropic, spatially flat universe with metric

ds2 = −N(τ)2dτ2 + a(τ)2hijdx
idxj

where h is a flat metric, a(τ) is the scale factor and N(τ) is the lapse function.

Matter: a free massless scalar ϕ(τ) and perfect fluid with energy density ρ(τ)
and equation of state parameter w < 1 (e.g., w = 0 for dust, w = −1 for dark
energy) so that

m := ρ(τ)a(τ)3(w+1) = const.

Minisuperspace action for this model given by (setting 8πG = 1)

S[a, ϕ,m, χ,N ] = V0

∫
R
dτ

(
−3ȧ2a

N
+
a3

2N
ϕ̇2 −N

m

a3w
+mχ̇

)
where χ and N are treated as Lagrange multipliers, and V0 :=

∫
d3x

√
h.
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Hamiltonian analysis
After going to the Hamiltonian formulation, we can change variables to

v = 4

√
V0
3

a
3(1−w)

2

1− w
, πv =

√
1

12V0
πa a

3w−1
2

(we always assume a > 0, v > 0) and rescale the scalar field variables as

φ =
√

3
8(1− w)ϕ, πφ =

√
8
3

πϕ
1−w to obtain a canonical form

H = Ñ
[
− π2

v +
π2
φ

v2
+ λ

]
, {v, πv} = {φ, πφ} = {t, λ} = 1

where also λ = V0m and Ñ = Na−3w.

There is a preferred gauge: Ñ = 1 leads to simplest dynamics with dt/dτ = 1.
In this gauge t becomes “time”. This is unimodular time for w = −1, conformal
time for w = 1

3; . . . Each fluid has its own time (multi-fluids [Magueijo 2021–])
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Solutions in t time
Classically, the variables t and φ evolve monotonically (if we exclude πφ = 0) so
are always good relational clocks. For v this is true if λ ≮ 0; for λ < 0 there is a
turning point (recollapse of the Universe).
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Classical solutions v(t) and φ(t) as functions of the clock t, with πφ = 1 and
λ = 1 (solid), λ = −1 (dashed) and λ = 0 (dotted).

All solutions have a (Big Bang/Big Crunch) singularity with v → 0 and φ→ ∞.
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Solutions in φ time
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Parameters: πφ = 1, λ = 1 (solid), λ = −1 (dashed) and λ = 0 (dotted).

When φ is used as a clock, the Big Bang/Big Crunch singularity is pushed
to φ→ ±∞. For λ > 0 there is a finite value of φ where v and t diverge.

The explicit form of cosmological solutions highly depends on the clock.
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Defining the Wheeler–DeWitt equation
Our Hamiltonian constraint is

gABπAπB + λ := −π2
v +

π2
φ

v2
+ λ ≈ 0

where gAB is a two-dimensional flat metric on the Rindler wedge, a portion of
Minkowski spacetime bounded by v = 0. We quantise this as(
−ℏ2□g − iℏ

∂

∂t

)
Ψ(v, φ, t) =

(
ℏ2
∂2

∂v2
+

ℏ2

v

∂

∂v
− ℏ2

v2
∂2

∂φ2
− iℏ

∂

∂t

)
Ψ(v, φ, t) = 0 .

General solution to the Wheeler–DeWitt equation (k ∈ R ∪ iR, λ ∈ R):

Ψ(v, φ, t) =
∑
k,λ

eikφeiλ
t
ℏ

(
α(k, λ)Ji|k|

(√
λ

ℏ
v

)
+ β(k, λ)J−i|k|

(√
λ

ℏ
v

))
.

We now need to define a Hilbert space for these, with appropriate inner product.

Steffen Gielen, University of Sheffield 10/21



Three different quantum theories Unitarity and clock dependence in quantum cosmology

Schrödinger-like quantum theory (first discussed in [Gryb & Thébault 2018/19])

We can see the Wheeler–DeWitt equation as a Schrödinger equation in t,(
ℏ2
∂2

∂v2
+

ℏ2

v

∂

∂v
− ℏ2

v2
∂2

∂φ2

)
Ψ(v, φ, t) = iℏ

∂

∂t
Ψ(v, φ, t) . (1)

This suggests defining the inner product (R is the Rindler wedge)

⟨Ψ|Φ⟩t :=
∫
R
dv dφ

√
g Ψ̄Φ =

∫ ∞

0

dv

∫
R
dφ v Ψ̄(v, φ, t)Φ(v, φ, t)

which is not automatically conserved under evolution in t: the operator appearing
on the left-hand side of (1) is not essentially self-adjoint. Needs reflecting
boundary condition at v = 0! Analogous to self-adjointness problem for

Ĥ = ℏ2
(
− ∂2

∂v2
−
k2 + 1

4

v2

)
(k ∈ R) on L2(R+,dv) .
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General normalisable solution
We can derive the general solution to the boundary condition needed for unitarity
and determine the most general normalisable state which is

Ψ(v, φ, t) =

∫
R

dk

2π
eikφ

{ ∞∑
n=−∞

ei
λkn
ℏ tB(k, λkn)

1

ℏ

√
−2λkn sinh(kπ)

kπ
Kik

(√
−λkn
ℏ

v

)

+

∫ ∞

0

dλ

2πℏ
ei
λ
ℏ tA(k, λ)

√
2πRe

[
e
iϑ(k)−i log

√
λ
λ0Jik

(√
λ
ℏ v
)]

√
ℏ cos

(
−2ϑ(k) + k log λ

λ0

)
+ ℏ cosh(kπ)


where ϑ(k) is a free function, λ0 is an arbitrary reference scale and

λkn = −λ0e−
(2n+1)π

k +
2ϑ(k)
k .

(ϑ(k) generalises the usual one-parameter family of self-adjoint extensions.)
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Using the scalar field or volume as a clock
We now write the Wheeler–DeWitt equation as

−ℏ2
∂2

∂φ2
Ψ(v, φ, t) =

(
−ℏ2

(
v
∂

∂v

)2

+ iℏv2
∂

∂t

)
Ψ(v, φ, t)

and see it as a Klein–Gordon-like equation on the Rindler wedge with an extra
“potential” term. This motivates defining the inner product

⟨Ψ|Φ⟩φ = i

∫
R
dt

∫ ∞

0

dv

v

(
Ψ̄
∂Φ

∂φ
− Φ

∂Ψ̄

∂φ

)
.

Again, not automatically conserved under evolution in φ: this time some solutions
need boundary condition at v = ∞! Analogous to self-adjointness problem for

Ô = −ℏ2(∂2/∂u2)− λe2u (λ ∈ R) on L2(R,du) .

However, the third theory defined using v as clock is automatically unitary.
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The role of unitarity
Classical solutions, when expressed in terms of one of the “natural” clock variables,
can terminate at a finite time as measured by the clock.

In t time this reflects the Big Bang/Big Crunch singularity of classical GR.

In φ time and with λ > 0 it reflects the fact that φ → φ0 as the Universe
expands and φ becomes an “infinitely slow” clock asymptotically.

Classically, clocks are not defined beyond the point where the solution terminates.
But what happens quantum mechanically? If we require quantum theory to be
unitary any state must have a globally well-defined time evolutuion.
⇒ Evolution must extend beyond points where classical solution terminates!

Conjecture [Gotay & Demaret 1983]: unitary slow-time quantum dynamics is always
nonsingular, while unitary fast-time quantum dynamics inevitably leads to collapse.
We extend this conjecture to clocks reaching infinity in finite “time”.
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Relation to previous work

• The model was analysed by Gryb and Thébault in a series of papers (2018/19)
using t as clock; generic resolution of the singularity was found in the sense
that ⟨v(t)⟩ ≥ Cψ > 0 where Cψ is some state-dependent constant. We
confirm and extend these results.

• Bojowald and Halnon (2018) studied the model using deparametrisation and
an effective (semiclassical) approach, finding inequivalent results for different
clocks since different factor orderings are needed.

• GR with a massless scalar field and fixed cosmological constant is similar to
our model (for us, since Λ is a conserved momentum, superpositions in Λ are
possible). This model was quantised by Paw lowski and Ashtekar (2012) using
φ as a clock. The authors found recollapse of the Universe at large volume,
but no singularity resolution, consistent with our general framework.
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Connection to Dirac quantisation
In our constructions we made a choice of inner product which might seem
ad hoc. Results can be seen from the more systematic perspective of group
averaging/Dirac quantisation, where one defines a physical inner product through

|ψph⟩ = δ(Ĉ)|ψ⟩ ⇒ ⟨ϕph|ψph⟩ := ⟨ϕ|δ(Ĉ)|ψ⟩

where C is our Hamiltonian constraint. In practice, one needs to write the
Hamiltonian constraint as system + clock, following [Höhn, Smith & Lock 2021]. So
if

ĈΨ(v, φ, t) :=

(
ℏ2
∂2

∂v2
+

ℏ2

v

∂

∂v
− ℏ2

v2
∂2

∂φ2
− iℏ

∂

∂t

)
Ψ(v, φ, t) ,

the theory using t as a clock is based on group averaging with respect to Ĉ which
is in this form. However, to use φ as a clock we would have to redefine Ĉ′ := v2Ĉ,
and we end up with the same inequivalent theories.

Can be understood classically as different choice of lapse in H = NC.
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Numerical analysis
To illustrate the differences between the theories further, we numerically study
the evolution of expectation values in semiclassical (Gaussian) states. Reflection
at v = 0 (when t is the clock) and v = ∞ (when φ is the clock) can be seen.

Colours represent different values of the standard deviation in Gaussian states.
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Time is running backwards
Recall that in the classical theory, v(t) is a monotonic function in each branch of
the classical solutions for λ > 0. However, this is very different if we now plot
the quantum expectation values ⟨t(φ)⟩ and ⟨v(φ)⟩ against each other:

The clock variable t starts to run backwards shortly before the quantum recollapse.
Very non-classical behaviour at what would be seen as low energies!
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Penrose–Carter diagrams
We can visualise the singularity-resolving solution obtained by using t as a clock
and the recollapsing solution obtained by using φ as a clock.

In both cases there is a region of large quantum fluctuations (shaded in grey)
which connects the contracting and expanding branches of the classical solution.
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Discussion

• Quantum theories defined with respect to different clocks inequivalent if we
require unitarity. Non-classical behaviour triggered when classical solutions
terminate in finite “time”, leading to reflecting boundary conditions.

• Canonical quantisation does not appear covariant with respect to
reparametrisations of time; these involve changing the lapse, and so change
the Hamiltonian H = NC which influences the choice of inner product.

• Should we see one choice of clock as more fundamental and only demand
unitarity for that clock? (e.g., the clock measuring proper time N = 1)

• Is there a remedy in the path integral approach? (e.g., BFV formalism to
implement formal gauge invariance with respect to time reparametrisations)

• Implications for claims of singularity resolution or other quantum corrections
to classical cosmology?
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