

Enhancing Gravitational Wave Science with Differentiable Models and New Physics Searches

Thomas Edwards | King College London | 16th June 2023

Gravitational Wave + ML Revolution

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Gravitational Wave Analysis

Gravitational Wave Analysis

Overview

How can automaticallydifferentiable models improve GW analysis tasks?

Kaze Wong

Max Isi

+ Kelvin K. H. Lam, Adam Coogan, James Alvey, and Daniel Foreman-Mackey

What could current searches be missing?

Horng Sheng Chia

Jay Wadekar

Aaron Zimmerman

Overview

How can automaticallydifferentiable models improve GW analysis tasks?

Kaze Wong

Max Isi

+ Kelvin K. H. Lam, Adam Coogan, James Alvey, and Daniel Foreman-Mackey

Symbolic and numerical differentiation

Symbolic and numerical differentiation

- Requires closed-form expressions
- Can lead to "expression swell"

Symbolic and numerical differentiation

- Requires closed-form expressions
- Can lead to "expression swell"

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Requires O(n) calls of the function where n is the number of parameters of the function
- Leads to numerical inaccuracies (rounding and truncation error)

What is Automatic Differentiation (AD)?

- Automatic differentiation is a family of methods which allows one to compute machine precision derivatives with little computational overhead for arbitrary computational programs
- Its foundation is that each mathematical step is itself differentiable and composable using the chain rule

$$\frac{\partial w}{\partial t} = \sum_{i}^{N} \frac{\partial w}{\partial u_{i}} \frac{\partial u_{i}}{\partial t}$$

Forward mode AD

- Forward mode breaks down a function into intermediate steps and simultaneously evaluates both the value of the intermediate variable and its derivative (also known as using dual numbers)
- Discussed extensively <u>here</u>
- Runs in \sim n x O(f)

$$f(x_1, x_2) = \sin(x_1 x_2) + x_1 x_2$$

- Forward mode breaks down a function into intermediate steps and simultaneously evaluates both the value of the intermediate variable and its derivative (also known as using dual numbers)
- Discussed extensively <u>here</u>
- Runs in \sim n x O(f)

$$f(x_1, x_2) = \sin(x_1 x_2) + x_1 x_2$$

$$x_1 = ?$$
 $x_2 = ?$
 $a = x_1 x_2$
 $b = \sin(a)$
 $c = a + b$

Forward mode AD

- Forward mode breaks down a function into intermediate steps and simultaneously evaluates both the value of the intermediate variable and its derivative (also known as using dual numbers)
- Discussed extensively <u>here</u>
- Runs in \sim n x O(f)

$$f(x_1, x_2) = \sin(x_1 x_2) + x_1 x_2$$

$$x_1 = ?$$
 $x_2 = ?$
 $dx_1 = 1$
 $dx_2 = 0$
 $a = x_1x_2$
 $da = x_1dx_2 + x_2dx_1$
 $da = cos(a)da$
 $da = a + b$
 $da = cos(a)da$

Forward mode AD

- Forward mode breaks down a function into intermediate steps and simultaneously evaluates both the value of the intermediate variable and its derivative (also known as using dual numbers)
- Discussed extensively <u>here</u>
- Runs in \sim n x O(f)

$$x_1 = ?$$
 $dx_1 = 1$ $dx_2 = 0$ $dx_1 = 1$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_2 = 0$ $dx_1 = 0$ $dx_2 = 0$ $dx_3 = 0$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
, where $n \ll m$

Why JAX?

[https://github.com/google/jax]

Runs on pure Python and numpy(ish) code

[https://github.com/google/jax]

Why JAX?

Runs on pure Python and numpy(ish) code

Use XLA compilation to speed up code substantially

[https://github.com/google/jax]

Why JAX?

Runs on pure Python and numpy(ish) code

Use XLA compilation to speed up code substantially

[https://github.com/google/jax]

Scales to different computing architectures and multiple cores or a cluster

Ripple

Waveform Optimization

Gradient-based Parameter Estimation

Template Bank Generation

Fisher Analyses

Ripple

Template Bank Generation

Fisher Analyses

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

Optimizing Waveforms

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

Optimizing Waveforms

$$\lambda \to \lambda - \alpha \nabla \mathcal{L}$$

Up to 50% Better Waveforms For Free

$$p(\boldsymbol{\theta} \mid d) \propto p(d \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

$$p(\boldsymbol{\theta} \mid d) \propto p(d \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

= Likelihood

$$p(\boldsymbol{\theta} \mid d) \propto p(d \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

- = Likelihood
- O = Prior

$$p(\boldsymbol{\theta} \mid d) \propto p(d \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

- = Likelihood
- O = Prior

Why Accelerate PE?

Low-latency follow up

Low-latency follow up

Overall compute

Low-latency follow up

Overall compute

Development cycle

flowMC

$$A\left(x',x\right) = \min\left(1, \frac{P\left(x'\right)}{P(x)} \frac{g\left(x \mid x'\right)}{g\left(x' \mid x\right)}\right)$$

flowMC

$$A\left(x',x\right) = \min\left(1, \frac{P\left(x'\right)}{P(x)} \frac{g\left(x \mid x'\right)}{g\left(x' \mid x\right)}\right)$$

flowMC

$$A\left(x',x\right) = \min\left(1, \frac{P\left(x'\right)}{P(x)} \frac{g\left(x \mid x'\right)}{g\left(x' \mid x\right)}\right)$$

For both BNS and BBH, we achieve converged results in ~1 min on an A100 GPU

Overview

How can automaticallydifferentiable models improve GW analysis tasks?

Kaze Wong

Max Isi

+ Kelvin K. H. Lam, Adam Coogan, James Alvey, and Daniel Foreman-Mackey

What could current searches be missing?

Horng Sheng Chia

Jay Wadekar

Aaron Zimmerman

Overview

How can automaticallydifferentiable models improve GW analysis tasks?

Kaze Wong

Max Isi

+ Kelvin K. H. Lam, Adam Coogan, James Alvey, and Daniel Foreman-Mackey

What could current searches be missing?

Horng Sheng Chia

Jay Wadekar

Aaron Zimmerman

[**TE**, Chia (JCAP): 2004.06729]

Matched Filtering

Matched Filtering is the optimum technique for extracting known signals from stationary Gaussian noise

Matched Filtering

Matched Filtering is the optimum technique for extracting known signals from stationary Gaussian noise

$$(h_1|h_2) \equiv 4 \operatorname{Re} \int_0^\infty df \frac{\tilde{h}_1(f)\tilde{h}_2^*(f)}{S_n(f)}$$

Effectualness/fitting-factor

The effectualness is the percentage of SNR retained by a template bank or model

$$\varepsilon \left(h_{\text{finite-size}} \right) \equiv \max_{t_c, \phi_c, \boldsymbol{p}_{\text{bbh}}} \left[h_{\text{finite-size}} \mid h \left(\boldsymbol{p}_{\text{bbh}} \right) \right]$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$egin{aligned} \mathcal{A}(f;m{p},m{\lambda}) &\propto \mathcal{A}_{\mathrm{PN}}(m{p}) \ &+ \mathcal{A}_{\mathrm{Int}}(m{\lambda}) + \mathcal{A}_{\mathrm{MR}}(m{\lambda}) \ \end{pmatrix} & \phi(f;m{p},m{\lambda}) &\propto \phi_{\mathrm{PN}}(m{p}) \ &+ \phi_{\mathrm{Int}}(m{\lambda}) + \phi_{\mathrm{MR}}(m{\lambda}) \end{aligned}$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$egin{aligned} \mathcal{A}(f;m{p},m{\lambda}) \propto \mathcal{A}_{ ext{PN}}(m{p}) \ &+ \mathcal{A}_{ ext{Int}}(m{\lambda}) + \mathcal{A}_{ ext{MR}}(m{\lambda}) \ &+ \phi_{ ext{Int}}(m{\lambda}) + \phi_{ ext{MR}}(m{\lambda}) \end{aligned}$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$egin{aligned} \mathcal{A}(f;m{p},m{\lambda}) \propto \mathcal{A}_{ ext{PN}}(m{p}) \ &+ \mathcal{A}_{ ext{Int}}(m{\lambda}) + \mathcal{A}_{ ext{MR}}(m{\lambda}) \ \end{pmatrix} &+ \phi_{ ext{Int}}(m{\lambda}) + \phi_{ ext{MR}}(m{\lambda}) \end{aligned}$$

$$\phi(f; \boldsymbol{p}) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\nu v^5} \left(\phi_{\text{point-particle}} + \phi_{\text{finite-size}}\right)$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$\phi(f; \boldsymbol{p}) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\nu v^5} \left(\phi_{\text{point-particle}} + \phi_{\text{finite-size}}\right)$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$\phi(f; \boldsymbol{p}) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\nu v^5} \left(\phi_{\text{point-particle}} + \phi_{\text{finite-size}}\right)$$

$$\phi_{\text{point-particle}} \propto \sum_{n} \phi_{n} v^{n}$$

$$\phi_{\text{finite-size}} \supset -50 \sum_{i=1}^{2} \left(\frac{m_{i}}{M}\right)^{2} \kappa_{i} \chi_{i}^{2} v^{4} - \frac{39\tilde{\Lambda}}{2} v^{10}$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$\phi_{\text{finite-size}} \supset -50 \sum_{i=1}^{2} \left(\frac{m_i}{M}\right)^2 \kappa_i \chi_i^2 v^4 - \frac{39\tilde{\Lambda}}{2} v^{10}$$

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$\phi_{\text{finite-size}} \supset -50 \sum_{i=1}^{2} \left(\frac{m_i}{M}\right)^2 \kappa_i \chi_i^2 v^4 - \frac{39\tilde{\Lambda}}{2} v^{10}$$

Spin Induced Quadruple

$$\tilde{h}(f; \boldsymbol{p}) = \mathcal{A}(\boldsymbol{p})e^{i\phi(f; \boldsymbol{p})}$$

$$\phi_{\text{finite-size}} \supset -50 \sum_{i=1}^{2} \left(\frac{m_i}{M}\right)^2 \kappa_i \chi_i^2 v^4 - \frac{39\tilde{\Lambda}}{2} v^{10}$$

Spin Induced Quadruple

Tidal Love Number

Spin-Induced Quadrupoles

Kappa controls the axisymmetric response of an object to spin *i.e.*, how oblate it becomes

Tidal Love Numbers

$$\Lambda = \frac{2}{3}k\left(\frac{r}{m}\right)^5$$

$$\Lambda = \frac{2}{3}k\left(\frac{r}{m}\right)^5$$

 $oldsymbol{0} = O(1)$ coefficient

$$\Lambda = \frac{2}{3}k\left(\frac{r}{m}\right)^5$$

- $oldsymbol{0} = O(1)$ coefficient
- Object's radius

$$\Lambda = \frac{2}{3}k\left(\frac{r}{m}\right)^5$$

- $oldsymbol{o}$ = O(1) coefficient
- Object's radius

Anything outside this space we cannot guarantee coverage

We performed the first inspiralonly search for signals that are **not** aligned-spin BBHs

No significant candidates found

Rate Constraints

27

We have currently search in the high-mass region of parameter space due to computational limitations

We have currently search in the high-mass region of parameter space due to computational limitations

Future searchers should focus on the low-mass region, where neutron stars may be hiding

- Waveform developers should start to use pure python (or JAX) for public release
- Real time PE processing could potentially replace matched filtering search pipelines

- Waveform developers should start to use pure python (or JAX) for public release
- Real time PE processing could potentially replace matched filtering search pipelines

Searches, especially at low masses, are currently limited by their template bank coverage

- Waveform developers should start to use pure python (or JAX) for public release
- Real time PE processing could potentially replace matched filtering search pipelines

Searches, especially at low masses, are currently limited by their template bank coverage

- Many more searches to be done in order to fully utilize the GW data we have
- Low-mass neutron stars are a great target for a future Love numbers search

- Quick to generate
- Can achieve ~100% coverage
- Placement of points in highly curved spaces unknown or difficult
- Require a known metric

[Cokelaer: <u>0706.4437</u>]

[Owen: <u>9511032</u>]

- Quick to generate
- Can achieve ~100% coverage
- Placement of points in highly curved spaces unknown or difficult
- Require a known metric

[Cokelaer: <u>0706.4437</u>]

[Owen: <u>9511032</u>]

0 templates (0 rejected)

- Does not require a metric
- Can be very slow to converge

0 templates (0 rejected)

- Does not require a metric
- Can be very slow to converge

Random Placement:

- Quick to generate
- Over covers the parameter space (in low dimensions)
- Requires a metric

Random Placement:

- Quick to generate
- Over covers the parameter space (in low dimensions)
- Requires a metric

Backup

