Flavour non-universality vs Naturalness

Joe Davighi, University of Zurich

JD, Isidori <u>2303.01520</u>

JD, Stefanek 2305.16280

JD, Gosnay, Miller, Renner (work in progress)

KCL, 22nd June

I will not say anything new about the large hierarchy problem (TeV² vs M_{Pl}^2) I will not say anything new about reducing the little hierarchy problem (M_h^2 vs TeV²)

I will not say anything new about the large hierarchy problem (TeV² vs M_{Pl}^2) I will not say anything new about reducing the little hierarchy problem (M_h^2 vs TeV²)

I will discuss:

- recent ideas for solving the flavour puzzle at low scales (TeV),
- consequences of these models for the (little) hierarchy problem,
- phenomenology in flavour observables, direct searches, & EW precision

Outline

- 1. Introduction: flavour BSM, naturalness, LHC
- 2. Solving the flavour puzzle at the TeV scale: non-universal gauge interactions
- 3. Implications for naturalness
- 4. Some phenomenological consequences

1. Introduction: Flavour BSM, naturalness, LHC

Flavour puzzle

Huge (technically natural) hierarchies in SM Yukawa couplings $y \overline{\Psi}_L H \Psi_R$:

$$1 \approx y_t \gg y_c \gg y_u \sim 10^{-5}$$

 $V_{us} \gg V_{cb} \gg V_{ub}$

Highly suggestive of accidental symmetries due to heavy BSM physics, e.g. new gauge symmetries at higher scales, that couples strongly to Higgs and/or top

Heavy BSM physics that couples to Higgs means the physical Higgs mass is tuned, unless we have e.g. SUSY or compositeness at a lower scale to protect M_h

See e.g. Farina, Strumia, Pappadopulo, 1303.7244

Contrast with dark matter & strong-CP problem, which *could* be explained by *light* NP that has no direct impact on EW stability

This sensitivity of M_h^2 to flavour-puzzle-solving-BSM appears severe:

- 1. Trying to explain structure of Higgs couplings $y \overline{\Psi}_L H \Psi_R$, so the NP probably couples to Higgs
- 2. Typically many extra states, probably with large couplings to top (even 2-loop δM_h^2 can be big)
- 3. Precision flavour data means that flavour-violation naively probes very heavy scales

Neutral meson mixing constraints: probe effective scales $> 10^5$ TeV

Flavour-ful BSM:

The natural view from the 2000s (Pre-LHC)

To avoid this fine-tuning, Higgs surely stabilized by SUSY or compositeness near TeV These mechanisms would protect M_h from **all** higher NP scales up to M_{Pl} ;

NP explaining flavour, gauge unification, neutrino masses, QG ...

Old Q: how to reconcile with flavour-violation constraints probing $O(10^{4-5})$ TeV?

Old A: the NP resolving the hierarchy problem is minimally flavour violating (**MFV**): nearly flavour-blind, with flavour violating effects set by SM Yukawas.

D'Ambrosio, Giudice, Isidori, Strumia, <u>hep-ph/0207036</u> Kagan, Perez, Volansky, Zupan, <u>0903.1794</u>

The natural view from the 2000s (Pre-LHC)

To avoid this fine-tuning, Higgs surely stabilized by SUSY or compositeness near TeV These mechanisms would protect M_h from **all** higher NP scales up to M_{Pl} ;

NP explaining flavour, gauge unification, neutrino masses, QG ...

Old Q: how to reconcile with flavour-violation constraints probing $O(10^{4-5})$ TeV?

Old A: the NP resolving the hierarchy problem is minimally flavour violating (**MFV**): nearly flavour-blind, with flavour violating effects set by SM Yukawas.

D'Ambrosio, Giudice, Isidori, Strumia, <u>hep-ph/0207036</u> Kagan, Perez, Volansky, Zupan, <u>0903.1794</u>

Flavour puzzle can then be solved at much higher scales without destabilising M_h^2

• Traditionally done using *horizontal gauge* symmetries that commute with G_{SM}

Froggatt, Nielsen, Nucl Phys B (1979)

"flavour-

blind" BSM

 $M_{\rm Pl}$

 Λ_{flav}

 Λ_{SUSY}

In 2020s, we know a lot more from the LHC + other experiments

M_{Pl} No sign (yet) of TeV scale SUSY partners or composite resonances $\Lambda_{GUT}, \ \Lambda_{\nu}$ that would stabilize the Higgs. Λ_{SUSY} ? 10 TeV Experimentally inferred mass gap, or "little hierarchy" $v_{\rm EM}$

<0.29 TeV 1901.01553 (0, 1ℓ + ≥ 2j + p_T^{mins})

0.01-0.125 TeV 1905.10331 (1j, 1y)

0.100

0.05-0.45 TeV 1909.04114 (2j)

Mass Scale [TeV]

1.000

0.05-0.4 TeV 2107.10892 (0, 1/ + ≥ 2j + p_T^{mine})

<1.95 TeV 2107.13021 (> 1i + p_***)

<1 5 TeV 2107 13021 (>1i+ n"")

0 2-4 64 TeV 2103.02 708 (2e. 2u)

0.2-5.15 TeV 2103.02 708 (2e, 2

0.2-4.6 TeV 2103.02708 (2e, 2µ)

0.2-4.3 TeV 2205.06709 (et)

0.2-4.1 TeV 2205.06709 (µt)

<3.5 TeV 1811.00 806 (2T + 2j)

0.5-3.6 TeV 1911.03947 (2j)

0.2-5 TeV 2205.06709 (eµ)

0.4-5.7 TeV 2202.06075 (# + pr

<5 TeV 2112.03949 (2µ

0.6-4.8 TeV 2212.12604 (T + PT

<4.7 TeV 2112.03949 (2e+2)

0.5-6.6 TeV 1911.0394

10.000

5-2.9 TeV 1911.03947 (2j

TeV 1803.08030 (2i)

8030 (**2**j)

 $107.13021 (\ge 1j + p_T^{nim})$

101 fb⁻¹

140 fb-

36 fb⁻¹

137 fb⁻

101 fb-

101 fb-

36 fb⁻¹

137 fb-

16 fb-

36 fb-

138 fb-

36 fb-

77 fb⁻¹

103 fb⁻

137 fb-

137 fb-

137 fb-

0.010

Λ_{GUT}, Λ_ν

 Z_0 , narrow resonance, $\varepsilon^2 = 3 \times 10^{-6}$ (90% C.L.)

SSM Z'(II)

SSM Z'(qq)

SSM W'(tv)

SSM W'(qq)

SSM W'(TV)

Leptophobic Z'

Z'(qq) Superstring Z',

LFV Z', BR(eµ) = 10%

LFV Z', BR(et) = 10%

LFV Z', BR($\mu\tau$) = 10%

LRSM $W_R(\mu N_R)$, $M_{H_R} = 0.5M_W$,

LRS M W₀(eN_0), $M_{H_0} = 0.5M_0$

LRSM $W_R(\tau N_R), M_{N_R} = 0.5 M_W$

Axigluon, Coloron, $cot\theta = 1$

(axial-)vector mediator ($\chi\chi$), $g_a = 0.25$, $g_{cm} = 1$, $m_x = 1$ GeV

scalar mediator (+t/tt), $g_q = 1, g_{cm} = 1, m_\chi = 1 \text{ GeV}$

scalar mediator ($t\bar{t}$), $g_n = 1$, $g_{cm} = 1$, $m_r = 1$ GeV

(axial)-vector mediator ($l\bar{l}$), $g_q = 0.1$, $g_{DM} = 1$, $g_l = 0.1$, $m_\chi > m_{med}/2$

In 2020s, we know a lot more from the LHC + other experiments

searches is in similar ballpark: currently around 10 TeV

Percent level tuning on M_h^2 in MFV SUSY / compositeness = "little hierarchy problem"

Beyond MFV: *very flavoured* NP can be lighter!

MFV is unnecessarily aggressive: LHC direct search limits driven by contributions from light-flavour operators (PDF enhanced in pp).

LHC bounds roughly **10 times weaker** for **NP coupled mostly to 3rd family**, for which **TeV scale remains viable**

Example: high- p_T Drell-Yan tail constraints on semi-leptonic SMEFT operators

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10714</u> Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10756</u>

2. Solving the flavour puzzle at the TeV scale

Beyond MFV: From U(3) global symmetries to U(2)

NP that couples differently to 3^{rd} family, but universally (e.g. zero) to light families, has some $U(2)^n$ flavour symmetry:

 $(\psi_1 \quad \psi_2)$ = doublets of U(2), ψ_3 = singlets of of U(2)

Imposing $U(2)^5$ flavour symmetry on NP is a weaker assumption than the $U(3)^5$ of MFV

- It allows NP coupled mostly to 3rd family, giving much weaker direct search constraints
- With a choice of minimal U(2)⁵-breaking spurions, one also avoids flavour bounds with NP scale around 1 TeV

Barbieri et al, <u>1105.2296;</u> Isidori, Straub, <u>1202.0464;</u> Fuentes-Martin et al, <u>1909.02519</u>

What would be the UV origin of such $U(2)^n$ flavour symmetries?

Beyond MFV: From U(2) global symmetries to non-universal gauge symmetry

The $U(2)^5$ flavour symmetry can be realised **accidentally**, from a flavour non-universal **gauge symmetry** that couples differently to 3rd family

The non-universal gauge symmetry, and the $U(2)^5$ it delivers, could be the origin of **flavour hierarchies**, because it will also restrict the Yukawa couplings:

U(2) accidental symmetries from **deconstructed** SM gauge interactions

Let's work from the bottom up. SM gauge symmetry: $SU(3) \times SU(2)_L \times U(1)_Y$ Consider 'deconstructing' each factor into a separate "light family" and "third family + Higgs" part:

TeV gauge
symmetry
contains:
$$SU(3)^{[12]} \times SU(3)^{[3]}$$
 $SU(2)_L^{[12]} \times SU(2)_L^{[3]}$ $U(1)_Y^{[12]} \times U(1)_Y^{[3]}$ $Y_{ij}^F \sim \begin{pmatrix} \times \times 0 \\ \times \times 0 \\ 0 & 0 & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}$ Allows 2 x 2 matrix of light
Yukawas (Higgs colourless)
Explains $V_{cb} \ll 1$
Doesn't explain $m_2 \ll m_3$ Rank-1 matrix, can be
diagonalised by a RH-rotation
that is unphysical (as in SM)Explains $V_{cb} \ll 1$
Explains $m_2 \ll m_3$

Need to deconstruct EW gauge symmetry to explain $m_2 \ll m_3^{-19}$

Towards the UV: possible origin of deconstructed gauge symmetry [digression]

Could be the last step in a multi-scale symmetry breaking pattern from fully deconstructed $G = G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_1 > \Lambda_2 > \Lambda_3$

Example origin 1:

Can embed multi-site picture in a stable multi-brane model in 5d

Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368 Fuentes-Martin, Isidori, Lizana, Selimovic, Stefanek, 2203.01952

Example origin 2:

"Gauge flavour unification": $\prod_{i=1}^{3} (SU(2)_{L,i} \times SU(2)_{R,i}) \hookrightarrow Sp(6)_L \times Sp(6)_R$

- $2^{\oplus 3} \hookrightarrow 6$: all SM fermions in just 2 fields Ψ_L and Ψ_R
- Offers a "gauge answer" to "why 3 generations?"
- Higgs \hookrightarrow (6, 6); EW-breaking vev also breaks flavour symmetry

Davighi, Tooby-Smith, 2201.07245 Davighi, 2206.04482

3. Deconstructed flavour symmetry vs Naturalness

TeV scale solution to flavour puzzle, via non-universal gauge interactions, is a phenomenologically viable possibility

If SUSY / compositeness doesn't kick in until 10 TeV (to resolve the large hierarchy problem), we should ask:

Have we made the little hierarchy problem (% tuning in M_h^2) worse?

Goal for rest of talk:

Use *stability of Higgs mass* to identify *natural TeV scale models of flavour* consistent with current data. We will see these models have rich pheno

Davighi, Isidori, Pesut, <u>2212.06163</u> **Davighi, Isidori <u>2303.01520</u>** Davighi, Stefanek <u>2305.16280</u> Davighi, Gosnay, Miller, Renner (work in progress)

Flavour non-universality vs. Naturalness

Naturalness criteria: $\delta M_h^2 \lesssim (125 \text{ GeV})^2$ (aggressive), $\delta M_h^2 \lesssim (\text{TeV})^2$ (little hierarchy)

Deconstructing EW symmetries give 1-loop Higgs mass corrections: (recall we need this to explain $m_2 \ll m_3$)

Deconstructing colour gives 2-loop correction, but with big couplings:

$$M_{W'_L} \lesssim 2.5 (20) \text{TeV}$$

 $M_{Z'_Y} \lesssim 5 (40) \text{TeV}$
Since $g_Y \sim \frac{1}{2} g_L$, which
also gives safer pheno
(more later...)

Natural mass ranges:

$$h - -\frac{g_s}{g_t} \underbrace{e_{uu}}_{G'} \underbrace{g_s}_{f_t} - h \qquad \Rightarrow \ \delta M_h^2 \sim \left(\frac{1}{16\pi^2}\right)^2 g_s^2 y_t^2 M_{G'}^2 \qquad M_{G'} \lesssim 10 \ (80) \ \text{TeV}$$

Semi-simple completions

In 2303.01520 (JD, Isidori), we made an additional assumption:

Model has semi-simple embedding in the UV i.e. no fundamental U(1) gauge symmetries (explains hypercharge quantisation; has a shot at being asymptotically free)

Semi-simple completions

In <u>2303.01520</u> (JD, Isidori), we made an additional assumption:

Model has semi-simple embedding in the UV i.e. no fundamental U(1) gauge symmetries (explains hypercharge quantisation; has a shot at being asymptotically free)

Semi-simple embeddings of the SM are classified^{*}; surprisingly few possibilities!

Allanach, Gripaios, Tooby-Smith, 2104.14555

All options use one of the basic "vertical" unification patterns:

- Pati-Salam $SU(4) \times SU(2) \times SU(2)$ Pati, Salam, <u>1974</u>
- *SU*(5)
- *SO*(10)

- Georgi, Glashow, 1974
- Georgi, 1975 and Fritzsch, Minkowski, 1975

3 generation subalgebra 339 Algebra: $\mathfrak{so}(10) \oplus \mathfrak{su}(2)$ (16, 1) $(0, 0, 0, 0, 1, 0) \mapsto (D, F, L, N, C)$) <i>U</i>)
(16, 1), $(0, 0, 0, 0, 1, 0) \mapsto (D, E, E, N, C)$ (16, 2), $(0, 0, 0, 0, 1, 1) \mapsto (D, D, E, E, N)$ Projection matrix for α :	L, L, N, N, Q, Q, U, U
	$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 & 2 \end{pmatrix}$
3 generation subalgebra 340 Algebra: so (10)	
	$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 \end{pmatrix}$

Semi-simple completions

In <u>2303.01520</u> (JD, Isidori), we made an additional assumption:

Model has semi-simple embedding in the UV i.e. no fundamental U(1) gauge symmetries (explains hypercharge quantisation; has a shot at being asymptotically free)

Semi-simple embeddings of the SM are classified^{*}; surprisingly few possibilities!

Allanach, Gripaios, Tooby-Smith, 2104.14555

All options use one of the basic "vertical" unification patterns:

• Pati-Salam $SU(4) \times SU(2) \times SU(2)$

• <u>SU(5)</u>-

• *SO*(10)

Pati, Salam, <u>1974</u>

Georgi, Glashow, 1974

Georgi, 1975 and Fritzsch, Minkowski, 1975

BUT SU(5) & SO(10) feature LQs that give treelevel proton decay! $\Rightarrow M_X \gtrsim$ GUT scale So SU(5) & SO(10) -based options cannot appear in our low-scale, natural models

3 generation subalgebra 339 Algebra: $\mathfrak{so}(10) \oplus \mathfrak{su}(2)$ (16, 1), (0, 0, 0, 0, 1, 0) \mapsto (D, E, L, N, Q, U) (16, 2), (0, 0, 0, 0, 1, 1) \mapsto (D, D, E, E, L, L, N, N, Q, Q, U, U) Projection matrix for α :
$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 & 2 & 0 \end{pmatrix}$
3 generation subalgebra 340 Algebra: $\mathfrak{so}(10)$ (16), $(0,0,0,0,1) \mapsto (D, E, L, N, Q, U)$ (16), $(0,0,0,1) \mapsto (D, E, L, N, Q, U)$ (16), $(0,0,0,1) \mapsto (D, E, L, N, Q, U)$ Projection matrix for α :
$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 & 2 \end{pmatrix}$

*assuming no extra chiral²fermions

$G_U \times G_3 \times H_{12}$						
	G_U	G_3	H_{12}			
1	$\mathrm{SU}(2)_L$	$\mathrm{SU}(4)^{[3]} imes \mathrm{SU}(2)^{[3]}_R$	$SU(3)^{[12]} \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_{R}$			
2	$\mathrm{SU}(2)_R$	$\mathrm{SU}(4)^{[3]} \times \mathrm{SU}(2)^{[3]}_L$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L}$			
3	SU(4)	$SU(2)_L^{[3]} imes SU(2)_R^{[3]}$	$SU(2)_L^{[12]} \times U(1)_R^{[12]}$			
4	Ø	${ m SU}(4)^{[3]} imes { m SU}(2)^{[3]}_L imes { m SU}(2)^{[3]}_R$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_R$			
		γ				
		Higgs and ψ_3	$\psi_{1,2}$, small impact on M_h^2 , can be UV completed at high			

End up with a small class of natural models at the TeV scale; all feature 3rd family quark-lepton unification

End up with a small class of natural models at the TeV scale; all feature 3rd family quark-lepton unification

4. Flavour deconstruction (at natural scale) gives rich phenomenology

Deconstructed SU(3) gives 'coloron' $G \sim (\mathbf{8}, \mathbf{1})_0$ Deconstructed SU(4) also gives vector leptoquark $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3} + Z'$, M < 10 TeV

Pheno of these particles has been well-studied in connection to B-anomalies

No clear "prediction" for an anomaly in $R_{D^{(*)}}$; if $M \approx 10$ TeV, $\Delta R_{D^{(*)}} \sim 10^{-3} R_{D^{(*)}}^{SM}$ (undetectable)

Still, a sizeable (up to 10%) deviation is a plausible signature of these models •

 $M_{G'} \lesssim 10 \ (80) \,{\rm TeV}$

Plenty of natural parameter space not yet probed

(but remember this option does m_2/m_3 hierarchy)

$M_{W_L} \lesssim 2.5 \ (20) \ {\rm TeV}$

Deconstructed $SU(2)_L$ gives weak triplet: important constraints from B_s mixing + LHC + EWPOs

w.i.p. with Sophie Renner, Alastair Gosnay, David Miller

 $\square B_s \text{ mixing } ([V_d]_{23} = V_{cb}/2)$

(If down-alignment, there is no constraint)

$M_{W_I} \lesssim 2.5 \ (20) \ \mathrm{TeV}$

Aebischer, Kumar, Straub 1804.05033

32

Straub 1810.08132

Deconstructed $SU(2)_L$ gives weak triplet: important constraints from B_s mixing + LHC + EWPOs

w.i.p. with Sophie Renner, Alastair Gosnay, David Miller

 $\square B_s$ mixing (up-alignment)

 $\square B_s$ mixing ($[V_d]_{23} = V_{cb}/2$)

(If down-alignment, there is no constraint)

Deconstructed $U(1)_Y$ gives Z': arguably most natural possibility, double benefit from $g_Y < g_L$

- 1. smaller Higgs mass correction
- 2. smaller NP effects

$$M_{Z_Y'} \lesssim 5 \ (40) \mathrm{TeV}$$

We built an explicit model in 2305.16280 (JD, Stefanek)

• TeV SSB $U(1)_{Y_{12}} \times U(1)_{Y_3} \rightarrow U(1)_Y$ by two scalars $\Phi_{q,H}$, Higgs charged under $U(1)_{Y_3}$

$$y_{u,d} \sim \begin{pmatrix} \frac{\langle \Phi_H \rangle}{\Lambda_H} & \frac{\langle \Phi_q \rangle}{\Lambda_q} \\ \frac{\langle \Phi_H \rangle \langle \Phi_q \rangle}{\Lambda_H \Lambda_q} & 1 \end{pmatrix}, \qquad y_e \sim \begin{pmatrix} \frac{\langle \Phi_H \rangle}{\Lambda_H} & \frac{\langle \Phi_H \rangle}{\Lambda_\ell} \\ \frac{\langle \Phi_H \rangle \langle \Phi_q \rangle}{\Lambda_H \Lambda_\ell} & 1 \end{pmatrix}$$

• Light Yukawa couplings generated by UV states at ~ 10 TeV (provide U(2)-breaking spurions):

Field	$SU(3)_c$	$SU(2)_L$	$U(1)_{3}$	$U(1)_{12}$	Generates:
H_{12}	1	2	0	1/2	$y_{c,s,\mu,u,d,e}, V_{us}$
$Q_{L,R}$	3	2	1/6	0	V_{cb},V_{ub}

Deconstructed $U(1)_Y$ gives Z': arguably most natural possibility, double benefit from $g_Y < g_L$

- 1. smaller Higgs mass correction
- 2. smaller NP effects

1.00.8 $an heta = g_{12}/g_3$ 0.60.40.2Coupled purely to 3rd generation 0.02 10 8 12 6 $M_{Z'}$ [TeV]

We built an explicit model in 2305.16280 (JD, Stefanek)

- $M_{Z'_Y} \lesssim 5 \ (40) \mathrm{TeV}$
- $----B_s$ mixing (with up-alignment! Suppressed by $Y_Q g_Y$)
- $B_s \rightarrow \mu\mu$ exclusion
 - Electroweak fit (1 sigma) using a new M_W average
- ——— Electroweak fit (2 sigma exclusion) excluding CDF II M_W
 - ---- High p_T exclusion (recast of $pp \rightarrow ee, \mu\mu, \tau\tau$ searches)
 - Percent tuning in M_h^2
 - A "natural" explanation of fermion mass hierarchies

 $M_{Z'_Y} \gtrsim 4 \text{ TeV}$ More natural than the W'_L option as anticipated

Future prospects: FCC-ee

- Huge luminosity compared to LEP (1 LEP worth of Z boson events few minutes)
- Plan: 4 years running on Z pole

Outcome:

 Huge leap forward in EW precision ("Z pole") observables

See e.g. FCC report for Snowmass 2203.06520

FCC-ee also has great potential in important flavour observables e.g. $BR(B \rightarrow K\tau^+\tau^-)$

Li & Liu, <u>2012.00665</u>

A key pheno message:

An EW precision machine like FCC-ee easily has power to completely exclude natural parameter space of this deconstructed $U(1)_Y$ model of flavour – which we identified as the most natural option in absence of SUSY / compositeness below 10 TeV

... and what of the large hierarchy problem?

"UV problems" that remain:

- 1. Resolve **1-2 sector** at $\sim 1000 \text{ TeV}$
- **2.** Neutrino masses... eg by see-saw from near GUT scale $\sim 10^{12}$ TeV
- 3. Quantum gravity at M_{Pl} (*wave hands*)

We imagine SUSY / compositeness could still enter ~ 10 TeV, protecting M_h^2 from the deep UV

... and what of the large hierarchy problem?

"UV problems" that remain:

- 1. Resolve **1-2 sector** at $\sim 1000 \text{ TeV}$
- **2.** Neutrino masses... eg by see-saw from near GUT scale $\sim 10^{12}$ TeV
- 3. Quantum gravity at $M_{\rm Pl}$ (*wave hands*)

We imagine SUSY / compositeness could still enter ~ 10 TeV, protecting M_h^2 from the deep UV

An inversion of MFV paradigm

- Very flavoured physics (non-universal gauge interaction) enters at TeV to explain flavour, but without worsening the little hierarchy problem
- Higgs is properly stabilized at higher scales, say 10 TeV

Summary

- 1. Flavour could be explained at TeV scale, without worsening the little hierarchy problem
- 2. Deliver accidental U(2) symmetries by deconstructing SM gauge symmetry; get flavoured heavy versions of the SM gauge bosons
- 3. Must deconstruct part of EW symmetry to explain fermion mass hierarchies; inevitably gives large-ish 1-loop Higgs mass corrections, so naturalness favours a low scale
- 4. Most natural option is to just deconstruct hypercharge near TeV scale
- 5. If also require semi-simple UV gauge group, expect 3rd family quark-lepton unification
- 6. Rich TeV pheno in colliders, flavour, and EWPOs. FCC-ee has huge potential to probe it.
- 7. SUSY or compositeness could still kick in at higher scale O(10 TeV) to stabilize H from the deep UV

Thanks!