Experimental Anomalies

Flavour non-universality in B meson decays? Anomalous magnetic moment of the muon? Mass of the W boson?

All have generated theoretical enthusiasm, but they may (well) all go away

John Ellis

Lepton Flavour Universality Violation in $B \rightarrow K\ell^+\ell^-$ Decays?

B decays to
$$e^+e^- > \mu^+\mu^-$$

Prima facie violation of lepton universality

SM interactions flavouruniversal

Except for Higgs couplings ∝ masses

LHCb Collaboration, arXiv:2103.11769

Other Previous Measurements

Flavour Anomalies in b->s Decays

• Parametrize using effective dimension-6 operators:

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$$

• Operators appearing in analysis:

$$\begin{aligned} O_{9}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \,, \\ O_{S}^{bs\ell\ell} &= m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell) \,, \\ O_{P}^{bs\ell\ell} &= m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) \,, \end{aligned} \qquad \begin{aligned} O_{9}^{\prime bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \,, \\ O_{10}^{\prime bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \,, \\ O_{S}^{\prime bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \,, \\ O_{P}^{bs\ell\ell} &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell) \,. \end{aligned}$$

- Evidence for non-zero coefficient of $O_9^{\mu} \equiv (\bar{s}\gamma_{\mu}P_L b)(\bar{\mu}\gamma^{\mu}\mu)$
- Maybe also non-zero coefficient of $O_{10}^{\mu} \equiv (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\mu}\gamma^{\mu}\gamma_{5}\mu)$
- No evidence of operators with electrons

Putting Measurements Together

► Combination all $b \rightarrow s \ell^+ \ell^-$ measurements

- Consistent set of measurements
- $hinspace > 6\sigma$ from SM
- But $B \to K^{(*)}\mu^+\mu^-$ BF and angular observables potentially suffer from underestimated hadronic uncertainties related to $c\bar{c}$ loop contributions

 $\rightarrow B_s \rightarrow \mu^+ \mu^-$ and LFU observables have very clean theory predictions.

 $ho~\sim$ 4.5 σ from SM

• Measurements point to new vector coupling (C_9^{μ})

Flavour Anomalies in b->s Decays

• Results for operator coefficients

	$b ightarrow s \mu$	μ	LFU, $B_s \rightarrow$	$ ightarrow \mu \mu$	all rare B decays	
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.87\substack{+0.19\\-0.18}$	4.3σ	$-0.74\substack{+0.20\\-0.21}$	4.1σ	$-0.80\substack{+0.14\\-0.14}$	5.7σ
$C_{10}^{bs\mu\mu}$	$+0.49^{+0.24}_{-0.25}$	1.9σ	$+0.60\substack{+0.14\\-0.14}$	4.7σ	$+0.55\substack{+0.12\\-0.12}$	4.8σ
$C_9^{\prime b s \mu \mu}$	$+0.39\substack{+0.27\\-0.26}$	1.5σ	$-0.32\substack{+0.16\\-0.17}$	2.0σ	$-0.14\substack{+0.13\\-0.13}$	1.0σ
$C_{10}^{\prime bs\mu\mu}$	$-0.10\substack{+0.17\\-0.16}$	0.6σ	$+0.06\substack{+0.12\\-0.12}$	0.5σ	$+0.04\substack{+0.10\\-0.10}$	0.4σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$-0.34\substack{+0.16\\-0.16}$	2.1σ	$+0.43\substack{+0.18\\-0.18}$	2.4σ	$-0.01\substack{+0.12\\-0.12}$	0.1σ
$C_{9}^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.60\substack{+0.13\\-0.12}$	4.3σ	$-0.35\substack{+0.08\\-0.08}$	4.6σ	$-0.41\substack{+0.07\\-0.07}$	5.9σ

Leptoquarks?

General Lagrangian for scalar leptoquarks:

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM-V_{H}} + |D_{\mu}\Phi|^{2} + |D_{\mu}S_{1}|^{2} + |D_{\mu}S_{3}|^{2} - \frac{1}{4}X_{\mu\nu}^{2} \\ &- \left(\eta_{i}^{\rm 3L}\,\overline{q}_{\rm L}^{c\,i}\ell_{\rm L}^{2}\,S_{3} - \eta_{i}^{\rm 1L}\overline{q}_{\rm L}^{c\,i}\ell_{\rm L}^{2}S_{1} - \eta_{i}^{\rm 1R}\overline{u}_{\rm R}^{c\,i}\mu_{\rm R}S_{1}\right) \\ &- \tilde{\eta}_{i}^{\rm 1R}\overline{d}_{\rm R}^{c\,i}\nu_{\mu,{\rm R}}S_{1} + \text{h.c.}\right) + \frac{1}{2}\varepsilon_{BX}B_{\mu\nu}X^{\mu\nu} \\ &- V_{H\Phi}(H,\Phi) - V_{13}(H,\Phi,S_{1},S_{3}) + \bar{\nu}_{\rm R}^{i}i\not{D}\nu_{\rm R}^{i} \\ &- \left(y_{\nu}^{ij}\bar{\ell}_{\rm L}^{i}\tilde{H}\nu_{\rm R}^{j} + M_{\rm R}^{ij}\bar{\nu}_{\rm R}^{ci}\nu_{\rm R}^{j} + y_{\Phi}^{ij}\Phi\,\bar{\nu}_{\rm R}^{ci}\nu_{\rm R}^{j} + \text{h.c.}\right) \;, \end{aligned}$$

$g_{\mu}-2:$ dawn of new physics or its sunset?

Volume 116B, number 4

$g_{\mu} - 2$ in Supersymmetry

 One-loop contribution from smuon/neutralino loop

$$\begin{aligned} \Delta(g-2)_{\mu} &= -ab(\cos\alpha\sin\alpha/4\pi^2)(m_{\mu}/m_{\widetilde{G}}) \\ &\times \{1/(1-\eta_1) + 2\eta_1/(1-\eta_1)^2 \\ &+ [2\eta_1/(1-\eta_1)^3] \log\eta_1 - (\eta_1 \leftrightarrow \eta_2)\}, \end{aligned}$$

• where $\eta_i \equiv (m_{s\mu_i}^2/m_{\widetilde{G}}^2)$

• and
$$\mathcal{L} = a\sqrt{2} \operatorname{s}_{\mu} \overline{\mu}_{\mathrm{L}} \widetilde{\mathrm{G}} + b\sqrt{2} \operatorname{t}_{\mu} \overline{\mu}_{\mathrm{R}} \widetilde{\mathrm{G}}$$

SPIN-ZERO LEPTONS AND THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

John ELLIS, John HAGELIN and D.V. NANOPOULOS CERN, Geneva, Switzerland

Received 14 June 1982

The anomalous magnetic moment of the muon $(g-2)_{\mu}$ imposes constraints on the masses and mixing of spin-zero leptons (sleptons). We develop the predictions of models of spontaneous supersymmetry breaking for the slepton mass matrix, and show that they are comfortably consistent with the $(g-2)_{\mu}$ constraints.

During the present resurgence of interest in supersymmetry broken at low energies [1] new significance is attached to the classical phenomenological playgrounds of gauge theories such as the anomalous magnetic moments of the electron and muon [2], flavourchanging neutral interactions [3-5] parity [6] and CP violation [7,8] in the strong interactions. The three latter phenomena make life rather difficult [3,7] for the most general form of soft supersymmetry breaking, whereas simple models [9-11] of spontaneously broken supersymmetry naturally [3,47] respect the ΔF $\neq 0, P$ and CP violation constraints. As for the anomalous magnetic moments of the leptons, it has long been known that they vanish in an exactly supersymmetric theory [12], and Fayet [2] showed that in his model of supersymmetry breaking $(g-2)_{\mu}$ would be compatible with experiment if the spin-zero muon (smuon) masses were heavier than 15 GeV. Direct experimental searches [13] now exclude the existence of lighter smuons. Fayet's analysis [2] was in the context of a model with a very light photino $\tilde{\gamma}$ (see fig. 1a), and Grifols and Méndez [14] have recently made the interesting observation that his analysis is significantly altered for massive gauginos (see figs. 1b, 1c). They show that there are potentially nontrivial constraints on the smuon masses in models of broken supersymmetry.

Fig. 1. One-loop diagrams contributing to $(g-2)_{\mu}$: (a) essentially massless photino ($\widetilde{\gamma}$) exchange, (b) \widetilde{W} and sneutrino (sv) exchange, and (c) \widetilde{B} or \widetilde{Z} exchange.

right transition operator there is a GIM [15]-like cancellation between the smuon mass eigenstates in fig. 1c which provides a potential suppression mechanism. We analyze recent models [10,11] of spontaneous supersymmetry breaking originating in the D and F sectors, respectively. We show that in the former case $(g-2)_{\mu}$ is suppressed by near degeneracy between the smuon mass eigenstates, while in the latter case $(g-2)_{\mu}$ is suppressed by small mixing angles between the leftand right-handed smuons. We close with some remarks about $(g-2)_{e}$ and about parity violation in the strong interactions.

When they examined figs. 1a, 1b and 1c, Grifols and Méndez [14] realized that there was a fundamental difference between the (almost ?) massless $\tilde{\gamma}$ diagram of fig. 1a and the \tilde{W} diagram of fig. 1b as compared to the massive \tilde{B} or \tilde{Z} diagram of fig. 1c. The

Contents lists available at ScienceDirect

Physics Reports

y

journal homepage: www.elsevier.com/locate/physrep

Theory Initiative

- Comprehensive review of calculations of the Standard Model contributions to $g_{\mu} 2$
- Including discussion of the uncertainties
- Particularly in calculation of leading-order vacuum polarisation

Aoyama et al, arXiv:2006.04822

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama ^{1,2,3}, N. Asmussen ⁴, M. Benayoun ⁵, J. Bijnens ⁶, T. Blum ^{7,8}, M. Bruno⁹, I. Caprini¹⁰, C.M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{14,*}, F. Curciarello ^{15,16}, H. Czyż ¹⁷, I. Danilkin ¹², M. Davier ^{18,*}, C.T.H. Davies ¹⁹, M. Della Morte ²⁰, S.I. Eidelman ^{21,22,*}, A.X. El-Khadra ^{23,24,*}, A. Gérardin ²⁵, D. Giusti^{26,27}, M. Golterman²⁸, Steven Gottlieb²⁹, V. Gülpers³⁰, F. Hagelstein¹⁴, M. Hayakawa^{31,2}, G. Herdoíza³², D.W. Hertzog³³, A. Hoecker³⁴, M. Hoferichter 14,35,*, B.-L. Hoid ³⁶, R.J. Hudspith ^{12,13}, F. Ignatov ²¹, T. Izubuchi ^{37,8}, F. Jegerlehner ³⁸, L. Jin ^{7,8}, A. Keshavarzi ³⁹, T. Kinoshita ^{40,41}, B. Kubis ³⁶, A. Kupich ²¹, A. Kupść ^{42,43}, L. Laub ¹⁴, C. Lehner ^{26,37,*}, L. Lellouch ²⁵, I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M.K. Marinković^{46,47} P. Masjuan^{48,49}, A.S. Meyer³⁷, H.B. Meyer^{12,13}, T. Mibe^{1,*}, K. Miura^{12,13,3} S.E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{12,*}, V. Pascalutsa¹², M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶, C.F. Redmer¹², B.L. Roberts^{57,*}, P. Sánchez-Puertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷, D. Stöckinger⁵⁸, H. Stöckinger-Kim⁵⁸, P. Stoffer⁵⁹ T. Teubner^{60,*}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13}, G. Venanzoni⁶¹, G. von Hippel¹², H. Wittig^{12,13}, Z. Zhang¹⁸, M.N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,65}, O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C.A. Dominguez⁶⁷, A.E. Dorokhov⁶⁸, V.P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C.S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J.R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A.S. Kronfeld²⁴, J. Laiho⁷⁵, S. Leupold⁴², P.B. Mackenzie²⁴, W.J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E.T. Neil⁷⁷, A.V. Nesterenko⁶⁸, K. Ottnad ¹², V. Pauk ¹², A.E. Radzhabov ⁷⁸, E. de Rafael ²⁵, K. Raya ⁷⁹, A. Risch ¹², A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E.P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸², A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A.S. Zhevlakov⁷⁸

¹Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
²Nishina Center, RIKEN, Wako 351-0198, Japan

³ Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan ⁴ School of Physics and Astronomy, University of Southampton, Southampton S017 1BJ, United Kingdom ⁵ LPNHE, Sorbonne Université. Université de Paris, CNRS/IN2P3, Paris, France

E-mail address: MUON-GM2-THEORY-SC@fnal.gov (G. Colangelo, M. Davier, S.I. Eidelman, A.X. El-Khadra, M. Hoferichter, C. Lehner, T. Mibe, A. Nyffeler, B.L. Roberts, T. Teubner).

https://doi.org/10.1016/j.physrep.2020.07.006

0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons org/licenses/by-nc-nd/4.0/).

⁸ Corresponding authors

Hadronic Vacuum Polarization

- Most important contribution is from low energies ≤ 1 GeV, dominated by ρ and ω peaks, taking account of interference effects
- Uncertainties dominated by ρ and ω region, and by region between 1 and 2 GeV (ϕ , etc.)
- High energies under good control from perturbative QCD

$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= 693.1(4.0) × 10⁻¹⁰.

Aoyama et al, arXiv:2006.04822

Fermilab Experiment

Does the magnet look familiar?

Fermilab Measurement

FNAL result: $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm) Combined result: $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm) Difference from Standard Model: $a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$

Interpretation Papers

2104.05685	Vector LQ	В	Du		890	Radiative seesaw		Chiang
5656	L_\mu - L_\tau	DM	Borah		2103.13991	Scalar LQ	B, H decays	Greljo
5006	B_q - L_\mu	В	Cen	Leptoquarks	2012.11766	DM		D'Agnolo
4494	LFV	LFV	Li		2012.07894	Axions		Darmé
4503	Pseudoscalar	DM, H decays	Lu	Extra U(1)	1812.06851	Charmphilic LQ		Kowalska
4456	2HDM	DM	Arcadi					
3542	B-LSSM	H decays	Yang	Extra Higgs	2104.04458	GUT-constrained SUSY	DM	Chakraborti
3701	Leptophilic spin 0	H factory	Chun		5730	LQ + charged singlet	B, Cabibbo	Marzocca
3839	SUSY	HL-LHC	Aboubrahim	Supersymmetry	6320	L-R symmetry		Boyarkin
3691	Survey	DM, LHC	Athron		6858	L_\mu - L_\tau	\nu masses	Zhou
3705	Seesaw	g_e	Escribano	Axion	6854	D-brane	U(1), Regge	Anchordoqui
3699	Gauged 2HDM	В	Chen		6656	vector LQ	В	Ban
3239	SUSY	Gravitino DM	Gu		7597	SUSY	LHC, landscape	Baer
3284	NMSSM	DM	Cao		7047	3HDM	Fermion masses	Carcamo
3262	GUT-constrained SUSY	DM, LHC	Wang		7680	Leptophilic Z'	Global analysis	Buras
3292	MSSM	CPV	Han		8289	Custodial symmetry	Light scalar + pseudoscalar	Balkin
3296	lepton mass matrix	Flavour	Calibbi		9205	U(1)D	Neutrino mass	Dasgupta
3280	Z_d	Cs weak charge	Cadeddu		8819	Lepton non-universality	Naturalness	Cacciapaglia
3334	E_6 3-3-1	H stability	Li		8640	2x2x1	Higgses, heavy nus	Boyarkina
3242	\mu-\tau-philic H	\tau decays, LHC	Wang		8293	Multi-TeV sleptons in FSSM	Extended H, tau decays	Altmannshofer
3259	Anomaly mediation	DM	Yin		10114	SO(10)	Yukawa unification	Aboubrahim
3245	pMSSM	DM, fine-tuning	Van Beekveld		7681	U(1)B-L	DUNE	Dev
3274	NMSSM	DM, AMS-02 pbar	Abdughani		10324	Gauged lepton number	Dark matter	Ma
3290	MSSM	DM	Cox		10175	2HDM	Lighter Higgs?	Jueid
3367	2HDM	V-like leptons	Ferreira		11229	LQ	Matter unification	Fileviez
3267	Axion	Low-scale	Buen-Abad		15136	U(1)	HE neutrinos, H tension	Alonso
3340	L_\mu - L_tau	AMS-02 positrons	Zu					
3282	ALP	V-like fermions	Brdar		2105.00903	Anomalous 3-boson vertex	W mass	Arbuzov
3301	Lepton portal	DM	Bai		7655	U(1)T3R	RK(*)	Dutta
3276	Dark axion portal	Dark photon	Ge		8670	Leptoquark	nu mass, LFV	Zhang
3491	GmSUGRA	LHC	Ahmed					, r
3227	2HDM	LHC	Han					
3302	SUSY	small \mu	Baum					
3238	Scalar	DM, p radius	Zhu					
3489	\mu \nu SSM	B, H decays	Zhang					
3287	pMSSM	ILC	Chakraborti					
3228	DM	B, H decays	Arcadi					

LHC vs Supersymmetry

- LHC favours squarks & gluinos > 2 TeV (but loopholes)
- Does not exclude lighter electroweakly-interacting particles, e.g., sleptons

Comparison of Calculations of Hadronic Vacuum Polarization

$$\left[a_{\mu}^{\mathrm{HVP}} + \left[a_{\mu}^{\mathrm{QED}} + a_{\mu}^{\mathrm{Weak}} + a_{\mu}^{\mathrm{HLbL}}
ight]
ight> \left[a_{\mu}^{\mathrm{SM}}
ight]$$

Aoyama et al, arXiv:2006.04822

Update on Lattice Calculations

data-driven calculations differ?

CDF Measurement of m_W

compared with previous measurements

Tension: 7- σ discrepancy with Standard Model?

Theoretical Interpretations of W Mass

taking CDF measurement at face value

90 papers and counting!

Supersymmetry?

3667	DM	Zhu	7970	GUT, finite group	Wilson			
3693	Inert H	Fan	8067	Extra U(1)	Zhang			
3797	EWPO	Lu	8266	Seesaw	Borah			
3996	Relation to g-2	Athron	8390	Zee model	Chowdhury			
4183	Avion chameleon	Yuan	8406	2HDM	Arcadi			
4103	EWPO	Strumia	8440	Beta decay	Cirigliano			
4202	SUEV	Vang						1
4202	EWDO	do Blac	8546	Oblique	Carpenter	1115	2004	Botolla
4204	EWPU	de blas	8568	Seesaw	Popov	1427		Botella
4280	SUST GIVISB	Tana	9001	2HDM	Ghorbani	1437	ZHDIVI	KIM
4356	SUST NIVISSIM	Tang	9029	Stueckelberg	Du		n 11	-
4514	non-standard H	Cacciapaglia	9031	Leptoquarks	Bhaskar	1699	Braneworld	Barman
4559	RH neutrinos	Blennow				1701	2HDM	Kim
4710	SUSY NMSSM	Cao	9376	Triplet	Batra	1911	Dark photon	Thomas
			9477	VIO	Cao	2088	Leptoquark+VLQ	He
5031	Seesaw triplet	Cheng	9/197	Extra LI(1)	Zeng	2205	bs anomalies	Li
5085	2HDM	Song	0595	Extra U(1)	Rook	2217	DM + g-2	Dcruz
5260	SMEFT	Bagnaschi	9363	Extra O(1)	Daek			
5267	Custodial symm	Paul	9671	Divitermions	вогап	2788	ResBos2	Isaacson
5269	2HDM	Bahl	40400		1.01			
5283	S&T	Asadi	10130	SMEFT	da Silva	3877	GUT triplet	Evans
5284	Higgs physics	Di Luzio	10156	Dark photon	Cheng	3917	VLQ.	Chowdhury
5285	FlexibleSUSY	Athron	10274	Triplet seesaw	Heeck	3942	PDFs	Gao
5296	S&T. SMEET	Gu	10375	FOPT triplet	Addazi	4016	Lepton portal	Kim
5302	D3-Brane	Heckman						
5303	2HDM	Babu	10338	2HDM	Lee	4473	IIP	Giudice
5505	2110101	Daba				4974	SO(10) avion	Lazaridas
5729	2004	Haa	11570	Extra U(1)	Cai	6024		Capianouic
5720	Coorgi Mashasak	Du	11755	2HDM	Benbrik	5022	JU(J)	Check
5/00	Georgi-Machacek	Chours				5041	Inplet	Ghosh
5942	Leptoquark	Crivelli	11871	nu-lepton collider	Yang		o. I	A 47 - 11
5962	VL quarks	crivellin	11945	Scotogenic DM	Batra	5610	Coloured scalars	Miralles
5965	Single-field	Endo	11991	Atomic PV	Tran Tan			
5975	2HDM + singlet	Biekötter	12018	2HDM	Abouabid	8215	SESM	Li
5992	SMEFT	Balkin	12453	Colour-octet	Gisbert			
			22.00			9109	SUSY 331	Rodriguez
6327	Non-local SM	Krasnikov	12909	Georgi-Machacok	Chen			
6485	2HDM	Ahn	12030	Evtra II(1)	Zhou			
6505	2HDM	Han	1302/		21100			
6541	RPV MSSM	Zheng	12000	DC avanian	Curto			
			13690	KG running	Gupta			
7022	Lepton portal DM	kawamura						
7144	Triplet H	Fileviez	5.00758	Flipped SU(5)	Basiouris			
			783	DM	Wang			

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

SMEFT Fits with the Mass of the W Boson

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Extensions of the Standard Model

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Models that can Contribute to W Mass

Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{\left(1 ight)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		X							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1	VIONS	JIGH	X	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
[1]	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	Ο	Operators							
	contributing to mu			Dr	anacchi IE	Madigan M	imacu Sanz	8. Vou arViv	··2201 0526

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

HL-LHC Search for Triplet Vector Boson

Baker, Martonhelyi, Thamm & Torre, arXiv:2207.05091

Summary

standard Model

B decays? $g_{\mu} - 2$? m_W ?