Neutrinoless $\beta\beta$ Decay and LEGEND

Matteo Agostini STFC Ernest Rutherford Fellow at UCL EPAP Seminar - King's College Feb 24, 2023

Science and Technology Facilities Council

What are we looking for?

 (A,Z) -> $(A,Z+2)$ + 2e

- 2 neutrons -> 2 protons $(\Delta B = 0)$
- 2 electrons are emitted $(\Delta L = 2)$

 (A,Z) -> $(A,Z+2)$ + 2e

- 2 neutrons -> 2 protons $(\Delta B = 0)$
- \bullet 2 electrons are emitted ($\Delta L = 2$)

Direct violation of **L** and **B-L**

 (A,Z) -> $(A,Z+2)$ + 2e

- 2 neutrons -> 2 protons $(\Delta B = 0)$
- \bullet 2 electrons are emitted ($\Delta L = 2$)

Matter-creation in the laboratory! Direct violation of **L** and **B-L**

 (A,Z) -> $(A,Z+2)$ + 2e

- 2 neutrons -> 2 protons $(\Delta B = 0)$
- \bullet 2 electrons are emitted ($\Delta L = 2$)

Direct violation of **L** and **B-L**

Prove that **neutrinos and antineutrinos** are the **same object**

Addressing the most pressing theory questions

Addressing the most pressing theory questions

If they have no mass…

1) spin/helicity -> intrinsic semi-classical property

moving direction

2) chirality -> weak force when they are created/destroyed

Matteo Agostini (UCL) 9 *Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659*

moving direction

 $\overline{\nu}$ Matteo Agostini (UCL) 10 *Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659*

What distinguishes neutrinos from antineutrinos?

If they have no mass…

 $\boldsymbol{\nu}$

neutrinos move antiparallel to their spin

left-handed chirality -> weakly-interact creating particles

anti-neutrinos move parallel to their spin

right-handed chirality -> weakly-interact creating antiparticles

 $\overline{\tau}$

W

W

 $\boldsymbol{\nu}$

But neutrinos are massive!

moving direction

Matteo Agostini (UCL) 11 *Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659*

We can boost in a frame in which they move in the opposite direction

Matteo Agostini (UCL) 12 *Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659*

There are two new non-interacting "sterile" states….

…or the same object has both chiral states

Matteo Agostini (UCL) 13 *Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659*

Dirac Majorana

Neutrino masses

- new right-handed neutrinos
- standard Higgs mechanism
- "unnaturally" small neutrino masses

Majorana

- alternative Higgs mass mechanism
- neutrino mass violates L (and thus B-L)
- "naturally" small mass (see-saw mechanism)

Neutrino masses

Majorana

Matteo Agostini (UCL) 2012 16

Neutrino masses

Majorana

A bit of history

Matteo Agostini (UCL) 2008 - 2009

A bit of history

1935: Goeppert-Mayer $\rightarrow \beta \beta$ decay

1937: Majorana and Racah \rightarrow the neutrino is its own antiparticle

1939: Furry \rightarrow "neutrinoless $\beta\beta$ decay" (0 $\nu\beta\beta$)

1987: Moe's \rightarrow first observation of a $\beta\beta$ decay with neutrinos (2 $\nu\beta\beta$)

2000: SNO/SK \rightarrow discovery that neutrinos oscillate \rightarrow are massive

[MA, Benato, Detwiler, Menéndez and Vissani,](https://doi.org/10.48550/arXiv.2202.01787) RMP 2023 ([arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787))

A bit of history

1935: Goeppert-Mayer $\rightarrow \beta \beta$ decay

1937: Majorana and Racah \rightarrow the neutrino is its own antiparticle

1939: Furry \rightarrow "neutrinoless $\beta\beta$ decay" (0 $\nu\beta\beta$)

1987: Moe's \rightarrow first observation of a $\beta\beta$ decay with neutrinos (2 $\nu\beta\beta$)

2000: SNO/SK \rightarrow discovery that neutrinos oscillate \rightarrow are massive

[MA, Benato, Detwiler, Menéndez and Vissani,](https://doi.org/10.48550/arXiv.2202.01787) RMP 2023 ([arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787))

How did we end up with this name?

What can we measure?

- decay rate
	- electron momentum
		- daughter isotope
			- gamma-rays from excited states

 $\Gamma \propto \frac{1}{T_{1/2}} \propto G g^4 M^2 \left(\frac{\nu}{\Lambda}\right)^n$ Particle Physics

Nuclear Physics

(even if sometimes *g* is used to incorporate biases in NME calculations) wavefunction overlap between initial and final states

lepton-nucleus interaction

Deppisch, Graf, Iachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)

$$
\Gamma \propto \frac{1}{T_{1/2}} \propto G g^4 M^2 \left(\frac{\nu}{\Lambda}\right)^n
$$
 Higgs vacuum expectation
energy scale of BSM

Dim 5: Weinberg Operator **Dim 7** Dim 7 Dim 9

Deppisch, Graf, Iachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)

Probing the mechanism

$$
T_{1/2}^{-1}(X) = G_{11+}^{(0)}(X) \left[\frac{m_{\beta\beta}}{m_e} M_{\nu}(X) + \epsilon M_{\rm SR}(X) \right]^2
$$

 0.3

 0.2

 0.1

 0.0

 -0.1

 $-0.2\frac{1}{0}$

 $\varepsilon\,[10^{-9}]$

- Data in multiple isotopes pin down channels
- NME values drive sensitivity
- epsilon: R-parity-violating supersymmetry, similar conclusions for other models

M[A, D](https://doi.org/10.48550/arXiv.2202.01787)eppisch, Van Goffrier, JHEP 02 (2023) 172

Discovery odds for the vanilla model

Light Majorana neutrino exchange

Discovery odds: normal ordered neutrinos

MA, Benato and Detwiler, PRD 96, 053001 (2017)

Discovery odds: normal ordered neutrinos

Cosmology surveys (DESI/EUCLID) close to

The LEGEND Collaboration

2022 Collaboration Meeting @ LNGS

Our mission: "Develop a **phased**, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years"

> 260 members 47 institutions across the world

Matteo Agostini (UCL) 36

 $+ \frac{N}{2}$
Two-component detection concept

Semiconductor HPGe **Detectors**

- 92% of detector material is 76Ge
- advanced event reconstruction
- high spatial and energy resolution

Liquid Argon Scintillation **Detector**

- ultraclean and cryogenic liquid
- isotropic emission of XUV photons
- calorimetric energy measurement

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- **•** sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- \bullet >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

times

Matteo Agostini (UCL) 44

Liquid argon scintillation detector

- \bullet $O(10^4)$ XUV photons per MeV
- wavelength shifting surfaces
- fibers and SiPM

0νββ signal and backgrounds

Multivariate 0νββ tagging

- no energy in LAr
- single Ge-detector hit
- \bullet energy = 2039 keV
- single-cluster event in Ge bulk volume (no surface interactions)

Background events can have these features only if:

- \bullet Q-value > 2039 keV
- extra energy deposited in dead detector areas

Our design driving principle:

minimize structural material around Ge detectors

0νββ signal and backgrounds

Multivariate 0νββ tagging

- no energy in LAr
- single Ge-detector hit
- \bullet energy = 2039 keV
- single-cluster event in Ge bulk volume (no surface interactions)

Background event populations are well separated in the multivariate space

- very small probability to enter the signal region
- very distinctive features to constrain it

Towards a Ton Scale Experiment

GERDA / Majorana Demonstrator

- 36/30 kg
- \bullet $\frac{1}{1/2}$ > 10^{26} yr

LEGEND - 200

- 200 kg
- background 2.5x lower than current values
- $\overline{1}_{1/2}$ > 10^{27} yr

LEGEND - 1000

- 1000 kg
- background 50x lower than current values
- \bullet $\frac{1}{1/2}$ > 10^{28} yr

GERDA Majorana Demonstrator

- **•** HPGe and LAr detectors
- completed in 2019
- 100 kg y of exposure
- background index: $5.2_{-1.3}^{+1.6}$ 10-4 cts/keV/kg/yr
- \bullet T_{1/2} > 1.8 10²⁶ yr (90% C.L.)
- best half-life sensitivity in the field

- compact Cu shielding
- completed in 2020
- FWHM energy resolution of 2.5 keV

Matteo Agostini (UCL) Phys.Rev.Lett. 125 (2020) 252502

LEGEND-200

- HPGe detectors
	- 70 kg of GERDA/MAJORANA detectors + 130 kg of new ICPC
- structural materials: electroformed copper + polyester scintillating plastic
- two-stages read-out electronics with JFET next to detectors' electrodes

LEGEND-200

- 3500 m.w.e. underground at LNGS
- water tank instrumented with PMTs
- \bullet 64 m³ LAr cryostat

LEGEND-200 preparation and commissioning

LEGEND-200 preparation and commissioning

Matteo Agostini (UCL) 53

LEGEND-200 commissioning

- Last commissioning phase started in Autumn 2022
- All final systems and more than 100 HPGe dets
- Currently fine-tuning operational parameters
- First physics run starting anytime

Matteo Agostini (UCL) 54

LEGEND-1000

- 4 payloads, each with up to 300 kg detectors
- underground argon in reentrant tubes
- lower-background solutions for electronics and cables
	- ASIC-based read-out
	- copper or Kapton flat flex cables
- **•** candidate host labs: LNGS and SNOLAB

Conceptual design depicted for SNOLAB cryopit

Background Levels Before Analysis Cuts

Background reduction due to:

larger detectors \Rightarrow less cables and holders new cables & ASIC read-out increased detector spacing

underground Ar

larger detectors \Rightarrow larger surface-to-volume ratio only 210Pb supported term

68Ge decays away, 2 yr less cool down than in GERDA

Factor 6 reduction, driven by underground Ar

Signal/Background Discrimination

Background After Analysis Cuts

Variable bin width, 1 keV binning for gamma lines

Matteo Agostini (UCL) \sim 58

LEGEND-1000 Schedule

High Discovery Power Experiments

Almost linear growth in discovery sensitivity

Illustrative Toy Data Set for 10 ton yr

Other physics opportunities beyond $0\nu\beta\beta$ decay

MA and Bossio, Ibarra, Marcano, Phys. Lett. B 815 (2021), 136127

Matteo Agostini (UCL) 61

Outlook

- \bullet 0 $\nu\beta\beta$ decay search is a priority
	- direct observation of B-L violation
	- **•** L-violating Majorana neutrinos
	- new physics at ultrahigh energy
- Ge-76 experiments aim at a background-free discovery
- LEGEND-200 is coming online, pioneering exploration of invented-ordered neutrinos
- LEGEND-1000 under preparation, top-ranked by DOE, CD1 in fall, high discovery potential

How to build a $0\nu\beta\beta$ decay experiment?

Step 1: Choose a $0\nu\beta\beta$ -decay candidate isotope

Single β decay forbidden or strongly suppressed

Matteo Agostini (UCL)

[M.A., Benato, Detwiler, Menéndez and Vissani](https://doi.org/10.48550/arXiv.2202.01787) [arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787) 64

How to build a $0\nu\beta\beta$ decay experiment?

Step 1: Choose a $0\nu\beta\beta$ -decay candidate isotope

Step 2: Develop a detection concept able to detect each single decay without false positives

Step 3: Make it big enough

$$
N_{\text{ov}\beta\beta} = \text{atoms} \cdot \text{time} / T_{\text{1/2}}
$$

$$
T_{1/2} = 10^{26} \text{ year}
$$

 $T_{1/2}$ = 10²⁸ year

100 -1000 moles ᐧ yr atoms ᐧ time 10,000 -100,000 moles ᐧ yr

Matteo Agostini (UCL) 65

How to build a $0\nu\beta\beta$ decay experiment?

Matteo Agostini (UCL) 66

Recent and future experiments

Matteo Agostini (UCL) 67 [M.A., Benato, Detwiler, Menéndez and Vissani](https://doi.org/10.48550/arXiv.2202.01787) [arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787)

Recent and future experiments

Matteo Agostini (UCL) 68 [M.A., Benato, Detwiler, Menéndez and Vissani](https://doi.org/10.48550/arXiv.2202.01787) [arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787)

Detection concepts

- calorimetric approach: source = detector
- solid state: pixelated detector
- liquid: monolithic self-shielding volume
- energy: primary and sufficient observable

[arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787) - Image courtesy of Laura Manenti

 $2\nu\beta\beta$ Events $0\nu\beta\beta$ $Q_{\beta\beta}$ Energy

Tagging $0\nu\beta\beta$ decay events:

- two -electron summed energy = Q-value
- two-electron event topology
- (excited states/daughter isotope)

Backgrounds:

- cosmic-ray induced
- \bullet ²³⁸U/²²⁸Th decay chains
- neutrons
- solar neutrinos
- $2\nu\beta\beta$ decay (only irreducible background)

Underground Laboratories

The most sensitive technologies

Matteo Agostini (UCL) 71 *[arXiv:2202.01787](https://doi.org/10.48550/arXiv.2202.01787) - Image courtesy of Laura Manenti*

Matteo Agostini (UCL) Energy (keV)

Ge semiconductor detectors

high-purity ⁷⁶Ge detectors

- ionization and charge drift
- < 0.1% energy resolution
- event topology

liquid Ar detector

shield and scintillation light

Staged approach:

- **GERDA/MAJORANA** Demonstrator (40 kg)
- **LEGEND-200** under commissioning (200 kg)
- **LEGEND-1000** conceptual design in preparation (1 t)

2000

2100

2150

2050

 10^{-4}

1950

Cryogenic calorimeters

- temperature variation and scintillation light
- particle identification and good resolution
- array of isotopically enriched crystals operated at ~10 mK

Nature 604 (2022) 7904, 53-58

Xe time projection chambers

ANODE

 -120 -120 -100 -80

 X (mm)

 $2e$

ZN

- 136Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

LIQUID or GAS PHOTOSENS PHOTON **nEX®** -40 1e $E - 80$ Support -100 structure

TPC

Refrigerant

LXe

Outer

cryostat

Vacuum

Inner

cryostat

Matteo Agostini (UCL) $\frac{80}{2}$ $\frac{100}{2}$ $\frac{100}{2}$ $\frac{140}{2}$ $\frac{140}{2}$ $\frac{130}{2}$ $\frac{130}{2}$

 13.3

Large liquid scintillators

- scintillator loaded with target isotope
- scintillation photons detected by PMTs
- photon number and arrival time gives event energy and position
- self-shielding and fiducialization

SNO+ @ SNOLab

Currently preparing for loading with 1.3 t of Te (0.5% loading)

3% loading in future phases

KamLAND-Zen-800 @Kamioka

- 750 kg of enriched Xe in nylon balloon
- backgrounds: $2\nu\beta\beta$, cosmogenic, solar neutrinos, 214Bi on balloon
- next phase: improved resolution and purer scintillator

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26}$ yr at 90% C.L.

Beyond a simple rate measurement

How to gain insight on the decay channel?

- measure the electron momenta \rightarrow angular distribution
- compare decay rate in different isotopes
- combined analysis of neutrino physics, including cosmology

collaboration

CUPID, LEGEND, nEXO will explore $m_{\beta\beta}$ values till the bottom of the inverted ordering and beyond, with a good chance to discover matter-creation

Matteo Agostini (UCL) 78

DESI and EUCLID promise to measure Σ. This will define a target for $0\nu\beta\beta$ experiments, with a no observation potentially hinting at Dirac masses or non-standard cosmology

KATRIN's parameter space is already excluded by both $0\nu\beta\beta$ decay and cosmology.

A signal would force to drastically rethink our phenomenology theory framework

Scenario 1: signal just beyond current limits

- experiments will discover it within a few years
- next-gen experiments will measures rate
- follow-up measurements of decay features

Scenario 2: weakest signal for inverted ordered neutrinos

- need to wait next-gen experiments for a discovery
- need R&D to measure decay features

Scenario 3: signal even weaker or absent

- need R&D for a convincing discovery
- interplay with oscillation experiments and cosmology can still lead to theory breakthroughs

Background Suppression **Background Suppression**

events leaking our 0νββ multivariate tagging

Neutrino masses

- new right-handed neutrinos
- **•** standard Higgs mechanism
- "unnaturally" small neutrino masses

- alternative Higgs mass mechanism
- neutrino mass violates L (and thus B-L)
- "naturally" small mass (see-saw mechanism)