Neutrinoless $\beta\beta$ Decay and LEGEND

Matteo Agostini STFC Ernest Rutherford Fellow at UCL EPAP Seminar - King's College Feb 24, 2023

Science and Technology Facilities Council

What are we looking for?

(A,Z) -> (A,Z+2) + 2e

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

(A,Z) -> (A,Z+2) + 2e

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Direct violation of **L** and **B-L**

(A,Z) -> (A,Z+2) + 2e

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Matter-creation in the laboratory! Direct violation of L and B-L

(A,Z) -> (A,Z+2) + 2e

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Direct violation of **L** and **B-L**

Prove that **neutrinos and antineutrinos** are the **same object**

Addressing the most pressing theory questions

Addressing the most pressing theory questions

8

If they have no mass...

1) spin/helicity -> intrinsic semi-classical property

moving _____ direction

2) chirality -> weak force when they are created/destroyed

Matteo Agostini (UCL)

Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659

Matteo Agostini (UCL)

What distinguishes neutrinos from antineutrinos?

If they have no mass...

neutrinos move antiparallel to their spin

left-handed chirality -> weakly-interact creating particles

anti-neutrinos move **parallel** to their spin

right-handed chirality -> weakly-interact creating antiparticles

 $\overline{\tau}$

W

W

But neutrinos are massive!

moving ______ direction

Matteo Agostini (UCL)

Dell'Oro, Marcocci, Viel and Vissani, Adv. High Energy Phys. 2016 (2016) 2162659

We can boost in a frame in which they move in the opposite direction

Matteo Agostini (UCL)

Dell'Oro, Marcocci, Viel and Vissani, Adv.High Energy Phys. 2016 (2016) 2162659

There are two new non-interacting "sterile" states....

...or the same object has both chiral states

Matteo Agostini (UCL)

Dell'Oro, Marcocci, Viel and Vissani, Adv. High Energy Phys. 2016 (2016) 2162659

Dirac

Majorana

Neutrino masses

- new right-handed neutrinos
- standard Higgs mechanism
- "unnaturally" small neutrino masses

Majorana

- alternative Higgs mass mechanism
- neutrino mass violates L (and thus B-L)
- "naturally" small mass (see-saw mechanism)

Neutrino masses

Majorana

Neutrino masses

Majorana

A bit of history

A bit of history

1935: Goeppert-Mayer $\rightarrow \beta\beta$ decay

1937: Majorana and Racah \rightarrow the neutrino is its own antiparticle

1939: Furry \rightarrow "neutrinoless $\beta\beta$ decay" ($0\nu\beta\beta$)

1987: Moe's \rightarrow first observation of a $\beta\beta$ decay with neutrinos ($2\nu\beta\beta$)

2000: SNO/SK \rightarrow discovery that neutrinos oscillate \rightarrow are massive

MA, Benato, Detwiler, Menéndez and Vissani, RMP 2023 (arXiv:2202.01787)

Matteo Agostini (UCL)

A bit of history

1935: Goeppert-Mayer $\rightarrow \beta\beta$ decay

1937: Majorana and Racah \rightarrow the neutrino is its own antiparticle

1939: Furry \rightarrow "neutrinoless $\beta\beta$ decay" ($0\nu\beta\beta$)

1987: Moe's \rightarrow first observation of a $\beta\beta$ decay with neutrinos ($2\nu\beta\beta$)

2000: SNO/SK \rightarrow discovery that neutrinos oscillate \rightarrow are massive

MA, Benato, Detwiler, Menéndez and Vissani, RMP 2023 (arXiv:2202.01787)

How did we end up with this name?

What can we measure?

- decay rate
 - electron momentum
 - daughter isotope
 - gamma-rays from excited states

$$\Gamma \propto \frac{1}{T_{1/2}} \propto G \, g^4 \, M^2 \left(\frac{\nu}{\Lambda} \right)^n \quad \text{Particle Physics}$$

Nuclear Physics

(even if sometimes **g** is used to incorporate biases in NME calculations)

• wavefunction overlap between initial and final states

• lepton-nucleus interaction

Deppisch, Graf, Iachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)

$$\Gamma \propto \frac{1}{T_{1/2}} \propto G \, g^4 \, M^2 \left(\frac{\nu}{\Lambda}\right)^n \qquad \text{Higgs vacuum expectation}$$
 energy scale of BSM

Dim 5: Weinberg Operator

Dim 7

Dim 9

Deppisch, Graf, lachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)

Probing the mechanism

$$T_{1/2}^{-1}(X) = G_{11+}^{(0)}(X) \left[\frac{m_{\beta\beta}}{m_e} M_{\nu}(X) + \epsilon M_{\rm SR}(X)\right]^2$$

0.3

0.2

0.1

0.0

-0.1

 $\varepsilon \left[10^{-9} \right]$

- Data in multiple isotopes pin down channels
- NME values drive sensitivity
- epsilon: R-parity-violating supersymmetry, similar conclusions for other models

MA, Deppisch, Van Goffrier, JHEP 02 (2023) 172

Discovery odds for the vanilla model

Light Majorana neutrino exchange

Matteo Agostini (UCL)

Probability for an atom to

Discovery odds: normal ordered neutrinos

MA, Benato and Detwiler, PRD 96, 053001 (2017)

Discovery odds: normal ordered neutrinos

The LEGEND Collaboration

2022 Collaboration Meeting @ LNGS

Our mission: "Develop a **phased**, ⁷⁶Ge based double-beta decay experimental program with **discovery potential** at a half-life **beyond 10**²⁸ **years**"

> 260 members 47 institutions across the world

Matteo Agostini (UCL)
Two-component detection concept

Semiconductor HPGe Detectors

- 92% of detector material is ⁷⁶Ge
- advanced event reconstruction
- high spatial and energy resolution

Liquid Argon Scintillation Detector

- ultraclean and cryogenic liquid
- isotropic emission of XUV photons
- calorimetric energy measurement

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

Solid state time projection chambers

- 200 V/cm minimum E-field
- O(10ns) resolution on the cluster arrival time
- sub-mm-scale cluster separation

- >10⁵ e-h pairs / MeV
- 0.1% energy resolution at 2 MeV

times

Liquid argon scintillation detector

- O(10⁴) XUV photons per MeV
- wavelength shifting surfaces
- fibers and SiPM

$0\nu\beta\beta$ signal and backgrounds

Multivariate $0\nu\beta\beta$ tagging

- no energy in LAr
- single Ge-detector hit
- energy = 2039 keV
- single-cluster event in Ge bulk volume (no surface interactions)

Background events can have these features only if:

- Q-value > 2039 keV
- extra energy deposited in dead detector areas

Our design driving principle:

minimize structural material around Ge detectors

$0\nu\beta\beta$ signal and backgrounds

Multivariate 0vββ tagging

- no energy in LAr
- single Ge-detector hit
- energy = 2039 keV
- single-cluster event in Ge bulk volume surface interactions)

Background event populations are well separated in the multivariate space

- very small probability to enter the signal region
- very distinctive features to constrain it

Towards a Ton Scale Experiment

GERDA / Majorana Demonstrator

- 36/30 kg
- $T_{1/2} > 10^{26} \text{ yr}$

LEGEND - 200

- 200 kg
- background 2.5x lower than current values
- $T_{1/2} > 10^{27} \text{ yr}^{-1}$

LEGEND - 1000

- 1000 kg
- background 50x lower than current values
- $T_{1/2} > 10^{28} \text{ yr}$

GERDA

Majorana Demonstrator

- HPGe and LAr detectors
- completed in 2019
- 100 kg y of exposure
- background index: 5.2₋₁₃^{+1.6} 10⁻⁴ cts/keV/kg/yr
- T_{1/2} > 1.8 10²⁶ yr (90% C.L.)
- best half-life sensitivity in the field

- compact Cu shielding
- completed in 2020
- FWHM energy resolution of 2.5 keV

Matteo Agostini (UCL)

Phys.Rev.Lett. 125 (2020) 252502

LEGEND-200

- HPGe detectors
 - 70 kg of GERDA/MAJORANA detectors + 130 kg of new ICPC
- structural materials: electroformed copper + polyester scintillating plastic
- two-stages read-out electronics with JFET next to detectors' electrodes

LEGEND-200

- 3500 m.w.e. underground at LNGS
- water tank instrumented with PMTs
- 64 m³ LAr cryostat

LEGEND-200 preparation and commissioning

LEGEND-200 preparation and commissioning

LEGEND-200 commissioning

- Last commissioning phase started in Autumn 2022
- All final systems and more than 100 HPGe dets
- Currently fine-tuning operational parameters
- First physics run starting anytime

LEGEND-1000

- 4 payloads, each with up to 300 kg detectors
- underground argon in reentrant tubes
- lower-background solutions for electronics and cables
 - ASIC-based read-out
 - copper or Kapton flat flex cables
- candidate host labs: LNGS and SNOLAB

Conceptual design depicted for SNOLAB cryopit

Background Levels Before Analysis Cuts

Background reduction due to:

larger detectors ⇒ less cables and holders new cables & ASIC read-out increased detector spacing

underground Ar

larger detectors \Rightarrow larger surface-to-volume ratio only ²¹⁰Pb supported term

⁶⁸Ge decays away, 2 yr less cool down than in GERDA

Factor 6 reduction, driven by underground Ar

Signal/Background Discrimination

Effective background suppression due to:

Background After Analysis Cuts

Variable bin width, 1 keV binning for gamma lines

LEGEND-1000 Schedule

2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
		CD-1	CD-2	CD-3									CD-4	
	Design an	d Planning					Enriched Ge	Procurem	nent					
							E	nriched De	etector Prod	duction				
				Cryosta	t Installati	on Ancilli	ary Installa	tion	Detector In	stallation a	nd Commiss	sioning		
										First Data ar	nd Pre-Oper	rations	Operatio	ons

High Discovery Power Experiments

Almost linear growth in discovery sensitivity

Illustrative Toy Data Set for 10 ton yr

Other physics opportunities beyond $0\nu\beta\beta$ decay

Physics	Signature	Energy
		Range
Bosonic dark matter	Peak at DM mass	$< 1 {\rm ~MeV}$
Electron decay	Peak at 11.8 keV	$\sim 10~{\rm keV}$
Pauli exclusion principle violation	Peak at 10.6 $\rm keV$	$\sim 10 \ {\rm keV}$
Solar axions	Peaked spectra, daily modulation	$< 10 {\rm ~keV}$
Majoron emission	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$
Exotic fermions	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$
Lorentz violation	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$
Exotic currents in $2\nu\beta\beta$ decay	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$
Time-dependent $2\nu\beta\beta$ decay rate	Modulation of $2\nu\beta\beta$ spectrum	$< Q_{etaeta}$
WIMP and related searches	Exponential excess, annual modulation	$< 10 {\rm ~keV}$
Baryon decay	Timing coincidence	$> 10 {\rm ~MeV}$
Fractionally charged cosmic-rays	Straight tracks	few keV
Fermionic dark matter	Nuclear recoil/deexcitation	< few MeV
Inelastic boosted dark matter	Positron production	< few MeV
BSM physics in Ar	Features in Ar veto spectrum	ECEC in ³⁶ Ar

MA and Bossio, Ibarra, Marcano, Phys. Lett. B 815 (2021), 136127

Outlook

- $0\nu\beta\beta$ decay search is a priority
 - direct observation of B-L violation
 - L-violating Majorana neutrinos
 - new physics at ultrahigh energy
- Ge-76 experiments aim at a background-free discovery
- LEGEND-200 is coming online, pioneering exploration of invented-ordered neutrinos
- LEGEND-1000 under preparation, top-ranked by DOE, CD1 in fall, high discovery potential

How to build a $0\nu\beta\beta$ decay experiment?

Step 1: Choose a $0\nu\beta\beta$ -decay candidate isotope

$1/T_{1/2} \propto$	$(Q_{\beta\beta})^{5}$	makes it che	aper lowers	backgrou
				Ì
Isotope	Daughter	$Q_{\beta\beta}{}^{\mathrm{a}}$	$f_{\rm nat}{}^{\rm b}$	$f_{ m enr}{}^{ m c}$
		$[\mathrm{keV}]$	[%]	[%]
^{48}Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21) 16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86) 2.80(2)	86
^{100}Mo	100 Ru	3034.40(17)	9.744(65) 99.5
116 Cd	116 Sn	2813.50(13)	7.512(54)) 82
$^{130}\mathrm{Te}$	130 Xe	2527.518(13) 34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)) 90
150 Nd	150 Sm	3371.38(20)	5.638(28) 91

Single β decay forbidden or strongly suppressed

M.A., Benato, Detwiler, Menéndez and Vissani arXiv:2202.01787

How to build a $0\nu\beta\beta$ decay experiment?

Step 1: Choose a $0\nu\beta\beta$ -decay candidate isotope

Step 2: Develop a detection concept able to detect each single decay without false positives

Step 3: Make it big enough

$$N_{ov\beta\beta}$$
 = atoms \cdot time / $T_{1/2}$

100 - 1000 moles · yr

 $T_{1/2} = 10^{28}$ year

10,000 -100,000 moles • yr

atoms · time

How to build a $0\nu\beta\beta$ decay experiment?

Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani arXiv:2202.01787

Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani arXiv:2202.01787

Detection concepts

- calorimetric approach: source = detector
- solid state: pixelated detector
- liquid: monolithic self-shielding volume
- energy: primary and sufficient observable

arXiv:2202.01787 - Image courtesy of Laura Manenti Matteo Agostini (UCL)

Tagging $0\nu\beta\beta$ decay events:

- two-electron summed energy = Q-value
- two-electron event topology
- (excited states/daughter isotope)

Backgrounds:

- cosmic-ray induced
- ²³⁸U/²²⁸Th decay chains
- neutrons
- solar neutrinos
- $2\nu\beta\beta$ decay (only irreducible background)

Underground Laboratories

The most sensitive technologies

Matteo Agostini (UCL)

arXiv:2202.01787 - Image courtesy of Laura Manenti 71

Matteo Agostini (UCL)

, 2

GERDA

2150

Ge semiconductor detectors

n+ electrode "

p+electrode

high-purity ⁷⁶Ge detectors

- ionization and charge drift
- < 0.1% energy resolution
- event topology

liquid Ar detector

• shield and scintillation light

Staged approach:

- GERDA/MAJORANA Demonstrator (40 kg)
- LEGEND-200 under commissioning (200 kg)
- **LEGEND-1000** conceptual design in preparation (1 t)

2000

2050

Energy (keV)

2100

 10^{-6}

1950
Cryogenic calorimeters

- temperature variation and scintillation light
- particle identification and good resolution
- array of isotopically enriched crystals operated at ~10 mK

Experiment	Crystal	m_{tot}	f_{enr}
		[kg]	[%]
CUORE	$^{\rm nat}{ m TeO_2}$	742	34^{a}
CUPID-0	$\mathrm{Zn}^{\mathrm{enr}}\mathrm{Se}$	9.65	96
CUPID-Mo	${\rm Li_2}^{\rm enr}{ m MoO_4}$	4.16	97
CROSS	${\rm Li_2}^{\rm enr}{ m MoO_4}$	8.96	98
CUPID	${\rm Li_2}^{\rm enr}{ m MoO_4}$	472	≥ 95
AMoRE	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	200	96

Nature 604 (2022) 7904, 53-58

Matteo Agostini (UCL)

Xe time projection chambers

- ¹³⁶Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout
	[kg]	[%]		
EXO-200	161	81	liquid	LAPPDs + wires
nEXO	5109	90	liquid	electrode tiles + $SiPM s$
NEXT-100	97	90	gas	SiPMs + PMTs
NEXT-HD	1100	90	gas	SiPMs + PMTs
PandaX-III-200	200	90	gas	Micromegas
PandaX-III-1K	1000	90	gas	Micromegas
LZ-nat	7000	9	dual-phase	\mathbf{PMTs}
LZ-enr	7000	90	dual-phase	\mathbf{PMTs}
DARWIN	39300	9	dual-phase	\mathbf{PMTs}

Matteo Agostini (UCL)

100

X (mm)

Outer detector 13m

Large liquid scintillators

- scintillator loaded with target isotope
- scintillation photons detected by PMTs
- photon number and arrival time gives event energy and position
- self-shielding and fiducialization

SNO+ @ SNOLab

Currently preparing for loading with 1.3 t of Te (0.5% loading)

3% loading in future phases

KamLAND-Zen-800 @Kamioka

- 750 kg of enriched Xe in nylon balloon
- backgrounds: $2\nu\beta\beta$, cosmogenic, solar neutrinos, ²¹⁴Bi on balloon
- next phase: improved resolution and purer scintillator

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \,\mathrm{yr} \,\mathrm{at} \,90\% \,\mathrm{C.L.}$

Matteo Agostini (UCL)

Beyond a simple rate measurement

How to gain insight on the decay channel?

- measure the electron momenta \rightarrow angular distribution
- compare decay rate in different isotopes
- combined analysis of neutrino physics, including cosmology

CUPID, LEGEND, nEXO will explore $m_{\beta\beta}$ values till the bottom of the inverted ordering and beyond, with a good chance to discover matter-creation

Matteo Agostini (UCL)

DESI and EUCLID promise to measure Σ . This will define a target for $0\nu\beta\beta$ experiments, with a no observation potentially hinting at Dirac masses or non-standard cosmology

KATRIN's parameter space is already excluded by both $0\nu\beta\beta$ decay and cosmology.

A signal would force to drastically rethink our phenomenology theory framework

Scenario 1: signal just beyond current limits

- experiments will discover it within a few years
- next-gen experiments will measures rate
- follow-up measurements of decay features

Scenario 2: weakest signal for inverted ordered neutrinos

- need to wait next-gen experiments for a discovery
- need R&D to measure decay features

Scenario 3: signal even weaker or absent

- need R&D for a convincing discovery
- interplay with oscillation experiments and cosmology can still lead to theory breakthroughs

Background Suppression

<1% probability of ²²⁸Th events leaking our 0vββ multivariate tagging

Neutrino masses

- new right-handed neutrinos
- standard Higgs mechanism
- "unnaturally" small neutrino masses

- alternative Higgs mass mechanism
- neutrino mass violates L (and thus B-L)
- "naturally" small mass (see-saw mechanism)