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Highlight: state-of-the-art Nature review [NatRev]

» Invented by John Skilling in 2004.

> Recent Nature review primer on nested
sampling led by Andrew Fowlie and
assembled by the community.

» Showcases the current set of tools, and

applications from chemistry to cosmology.

> Recent 1.5 day conference in Munich:
“Frontiers of Nested Sampling”

> Planned week-long NSCON 2024

> In this talk:

> User guide to nested sampling
> Particle physics applications

» Cosmology applications

> Machine learning applications

Will Handley <wh260Q@cam.ac.uk>
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What is Nested Sampling?

> Nested sampling is a radical, multi-purpose numerical tool.

» Given a (scalar) function f with a vector of parameters 6, it can be used for:

Optimisation Exploration Integration

Omax = max f(0) draw/sample 6 ~ f ff(g)dv

Will Handley <wh260@cam.ac.uk> 3/25
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Where is Nested Sampling?

emcee

» For many purposes, in your Neural Net you the memc hammer
should group Nested Sampling with
(MCMCQ) techniques such as:
Metropolis-Hastings (PyMC, MontePython)
Hamiltonian Monte Carlo (Stan, blackjax)
Ensemble sampling (emcee, zeus).

Variational Inference (Pyro)

E
2
1
0
1
2
3

Sequential Monte Carlo
Thermodynamic integration
Genetic algorithms

v v v v v v v

» You may have heard of it branded form:

» MultiNest
> PolyChord
> dynesty

> ultranest

Will Handley <wh260Q@cam.ac.uk>
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Integration in Physics

» Integration is a fundamental concept in physics, statistics and data science:
Partition functions Path integrals Bayesian marginals

Z(B) = f e PH(@P) dgdp V= J e Dx Z(D) = fﬁ(D|€)7r(9)d9

» Need numerical tools if analytic solution unavailable.

y .

» High-dimensional numerical integration is hard. | .
L

» Riemannian strategy estimates volumes geometrically:

f(x)d"x ~ Z f(x)AV; ~ O(e") ,(,"',".’,",’,fg, y
J i / ettt
» Curse of dimensionality = exponential scaling.
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Probabalistic volume estimation

» Key idea in NS: estimating volumes
probabilistically

V‘lfte]' Nin
~

a

~
Viefore Nout + Nin

» This is the only way to calculate volume in
high dimensions d > 3.

> Geometry is exponentially inefficient.

> This estimation process does not depend on
geometry, topology or dimensionality

» This really is the unique selling point of
nested sampling.

Will Handley <wh260Q@cam.ac.uk>
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Nested sampling
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MCMC Nested sampling
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MCMC

>

>

>

Single “walker”
Explores posterior
Fast, if proposal matrix is tuned

Parameter estimation, suspiciousness
calculation

Channel capacity optimised for generating
posterior samples

Will Handley <wh260@cam.ac.uk>

Nested sampling

v

Ensemble of “live points”

v

Scans from prior to peak of likelihood

v

Slower, no tuning required

» Parameter estimation, model comparison,
tension quantification

v

Channel capacity optimised for computing
partition function

7/25
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The nested sampling meta-algorithm

» Start with n random samples over the space.

» Delete outermost sample, and replace with a
new random one at higher integrand value.

» The “live points” steadily contract around
the peak(s) of the function.

» We can use this evolution to estimate
volume probabilistically.

» At each iteration, the contours contract by
~ % of their volume.

» This is an exponential contraction, so

DUF()AV;, V= Voe /"
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The nested sampling meta-algorithm: Lebesgue integration

» At the end, one is left with a set of r
discarded “dead” points.

» Nested sampling estimates the density of
states and calculates partition functions

Z(8) = 2, (x) AV,

» The evolving ensemble of live points allows:
> implementations to self-tune
» exploration of multimodal functions
> global and local optimisation

> For this kind of numerical, generic,
high-dimensional integration, it is the only
game in town.

Will Handley <wh260@cam.ac.uk> 9 /25
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Sampling from a hard likelihood constraint

“It is not the purpose of this introductory paper to develop the technology of navigation
within such a volume. We merely note that exploring a hard-edged likelihood-constrained
domain should prove to be neither more nor less demanding than exploring a likelihood-
weighted space.”
— John Skilling

» A large fraction of the work in NS to date has been in attempting to implement a
hard-edged sampler in the NS meta-algorithm {6 ~ 7 : L(0) > L.}.

» https://projecteuclid.org/euclid.ba/1340370944.

» There has also been much work beyond this (see 'frontiers of nested sampling talk’

> See "Frontiers of nested sampling”: willhandley.co.uk/talks

Will Handley <wh260@cam.ac.uk> 10 / 25
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Implementations of Nested Sampling [2205.15570](NatReview)

Step 1 Step2 Step 3

MultiNest [0809.3437] PolyChord [1506.00171] DNest [1606.03757]

ProxNest [2106. 3646]

lsratest (210109604 NeuralNest [1903.10860] X
2(5)
5 /; /- ‘T € <« B 3 prosy, (x() _—
s | ( = = y % ‘
/ : ///f vl e \/ \ 7 \ 4 ak=2) =

/ ;;// 1‘;'\/,(; - (( d’ N : —_ N >

constraint set

nessai [2102.11056] -

nora [2305.19267] dynesty [1904.02180]
Will Handley <wh260@cam.ac.uk> 11 / 25
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Types of nested sampler

» Broadly, most nested samplers can be split into how they create new live points.
> i.e. how they sample from the hard likelihood constraint {# ~ 7 : L(0) > L.}.

Rejection samplers Chain-based samplers

> e.g. MultiNest, UltraNest. > e.g. PolyChord, ProxNest.

» Constructs bounding region and draws » Run Markov chain starting at a live point,
many invalid points until £(0) > L. generating many valid (correlated) points.

» Efficient in low dimensions, exponentially » Linear ~ O(d) penalty in decorrelating
inefficient ~ O(ed/do) in high d > dy ~ 10. new live point from the original seed point.

> Nested samplers usually come with:

> resolution parameter miy. (Which improve results as ~ O(ngvle/z).
> set of reliability parameters [2101.04525], which don't improve results if set arbitrarily high, but
introduce systematic errors if set too low.

> e.g. Multinest efficiency eff or PolyChord chain length nyepeats-
Will Handley <wh260@cam.ac.uk> 12 / 25
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Applications: The three pillars of Bayesian inference

Parameter estimation
What do the data tell us about
the parameters of a model?
e.g. the size or age of a A\CDM
universe

P(D|6, M)P(6|M)

L x
Z
Likelihood x Prior
Evidence

P =

Posterior =

Will Handley <wh260Q@cam.ac.uk>

Model comparison

How much does the data
support a particular model?
e.g. NCDM vs a dynamic
dark energy cosmology

P(DIM)P(M)
P(D)
ZmMm
Zm Zmrlm

Evidence x Prior

P(M|D) =

Posterior = —
Normalisation

Tension quantification

Do different datasets make
consistent predictions from the
same model? e.g. CMB vs
Type IA supernovae data

_ ZaB
T

|0g5 = <|og EAB>73AB
—log £A>7>A
—log £B>7DB
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Applications of nested sampling

Cosmology

» Battle-tested in Bayesian cosmology on
> Parameter estimation: multimodal alternative to
MCMC samplers.
» Model comparison: using integration to compute
the Bayesian evidence
» Tension quantification: using deep tail sampling
and suspiciousness computations.

» Plays a critical role in major cosmology pipelines:

Planck, DES, KiDS, BAO, SNe.

» The default ACDM cosmology is well-tuned to
have Gaussian-like posteriors for CMB data.

> Less true for alternative cosmologies/models and
orthogonal datasets, so nested sampling crucial.

Will Handley <wh260Q@cam.ac.uk>
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. . . Metha Prathaban
Applications of nested sampling oo M
Astrophysics

> In exoplanets [1806.00518] 5

> Parameter estimation: determining properties of planets.
> Model comparison: how many planets? Stellar
modelling [2007.07278]. T
> exoplanet problems regularly have posterior phase
transitions [2102.03387] 0 e Tay 0 B

— Overall

RV /m/s
o

IMRPhenom
—— EOBNR

» In gravitational waves

> Parameter estimation: Binary merger properties
> Model comparison: Modified theories of gravity, selecting =
phenomenological parameterisations [1803.10210] Tl

> Likelihood reweighting: fast slow properties ] e

Will Handley <wh260@cam.ac.uk> 15 / 25
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Applications of nested sampling
Particle physics

> Nested sampling for cross section
computation/event generation

> Nested sampling can explore the phase space 2
and compute integral blind with comparable
efficiency to HAAG/RAMBO [2205.02030].

» Bayesian sparse reconstruction [1809.04598]
applied to bump hunting allows evidence-based

detection of signals in phenomenological
backgrounds [2211.10391].

> Fine tuning quantification

» Fast estimation of small p-values
[2106.02056](PRL), just make switch:
Xop Lo 0o x

Will Handley <wh260@cam.ac.uk>
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Applications of nested sampling
Lattice field theory

» Consider standard field theory Lagrangian:

Z() = f Dpe#5®) §(g) = f oL (0)

» Discretize onto spacetime grid.
» Compute partition function

NS unique traits:

> Get full partition function for free
> allows for critical tuning

> avoids critical slowing down

v

v

Applications in lattice gravity, QCD,
condensed matter physics

v

Publication imminent (next week)

Will Handley <wh260@cam.ac.uk>
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S . K Javid e
Applications of nested sampling amran “avie :3‘

Machine learning

» Machine learning requires:

> Training to find weights
» Choice of architecture/topology/hyperparameters

» Bayesian NNs treat training as a model fitting problem

» Compute posterior of weights (parameter estimation),
rather than optimisation (gradient descent)

» Use evidence to determine best architecture (model
comparison), correlates with out-of-sample performance!

» Solving the full “shallow learning” problem without
compromise [2004.12211][2211.10391].
> Promising work ongoing to extend this to transfer learning
and deep nets.

» More generally, dead points are optimally spaced for
training traditional ML approaches.

Will Handley <wh260Q@cam.ac.uk>
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Catherine Watkinson /W
A

Senior Data Scientist

Applications of nested sampling
And beyond. ..

» Techniques have been spun-out (PolyChord Ltd) to
> Protein folding

> Navigating free energy surface.

» Computing misfolds.

> Thermal motion.
» Nuclear fusion reactor optimisation

> multi-objective.
> uncertainty propagation.

» Telecoms & DSTL research (MIDAS)

» Optimising placement of transmitters/sensors.
» Maximum information data acquisition strategies.

(15 Q Bl O FRER 6 B
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Applications of nested sampling
And beyond. . .

PhD — Data Scientist
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REACH: Global 21cm cosmology [2210.07409](NatAstro) lan Roque g;

PhD

» Imaging the universal dark ages using CMB backlight.

» 21cm hyperfine line emission from neutral hydrogen.

» Global experiments measure monopole across frequency.
» Challenge: science hidden in foregrounds ~ 10* xsignal.
> Lead data analysis team (REACH first light in January)

> Nested sampling woven in from the ground up (calibrator, 2
beam modelling, signal fitting, likelihood selection). 50 ——
_ ' . cton SO
» All treated as parameterised model comparison problems. - f\
4 0

Reionization ends

Dark Ages Cosmic timeline
—_

Brightness Temperature /mK

Heating begins
-125
REACH band

o 25 50 75 100 125 150 175 200
Frequency /MHz
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GAMBIT: combining particle physics & cosmological data

» Multinational team of particle physicists, e 1: :" o E?:T,léfiépri;,:
cosmologists and statisticians. o 18 Dhxe ]
> Combine cosmological data, particle colliders, 7 i ]
direct detection, & neutrino detectors in a o i i
statistically principled manner [2205.13549]. " i i
10~ iF 1
» Lead Cosmo/Dark Matter working o 1 1
group [2009.03286]. . : ;
> Nested sampling used for global fitting, and ! ]
fine-tuning quantification [2101.00428] 001 £
1074 3
v 10°° ::
. £
10710 :
10712 RIS " " :

10 109 108 10 10" 107 0.01

Tl
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N5 . Kilian Scheutwinkel #
Likelihood-free inference (aka SBI) o %
» How do you do inference if you don't know

the likelihood P(D|6)?

> e.g. if you can simulate a disease outbreak,

how can you infer a posterior on Ry, or select

the most predictive model?

Phest

data

» If you can forward simulate/model § — D,

then you have an implicit likelihood. Pr(pld, M) m,,,v%
Pr(p| M) Pr(p| M)
» LFI aims to (machine-)/earn the likelihood !

from carefully chosen training data {(6, D)}. "
» Nested sampling has much to offer

> truncation strategies (PolySwyft)
> evidence driven compression
» marginalised machine learning

(1) learn p(6, t) (2) learn p(6]t)

— posterior —— posterior

probability density  data (summaries), t

> In my view, LFI represents the future of
inference — in twenty years time this will be

as well-used as MCMC techniques are today.
Will Handley <wh260@cam.ac.uk> 22 / 25
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Harry B
unimpeded: PLA for the next generation arry Bevins

PhD—JRF

» DIRAC 2020 RAC allocation of 30MCPUh

» Main goal: Planck Legacy Archive equivalent
» Parameter estimation — Model comparison
» MCMC — Nested sampling

» Planck — {Planck, DESY1, BAO,...

» Pairwise combinations

» Suite of tools for processing these
> anesthetic 2.0
> unimpeded 1.0
> zenodo archive
> margarine

» MCMC chains also available.

» Library of bijectors emulators for fast re-use

Will Handley <wh260@cam.ac.uk> 23 / 25
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. Will Barker
CosmoTension .

Resolving cosmological tensions with diverse data, novel theories and Bayesian machine learning

— analytic solution
+ oscode
oscode dense output

» ERC grant = UKRI Frontier, commencing 2023.
» Funds 3 PDRAs and 4 PhDs over 5 years.

» Research programme centered around combining novel
theories of gravity, Boltzmann solvers [1906.01421],
reconstruction [1908.00906], nested sampling &
likelihood free inference.

> Aims to disentangle cosmological tensions Hp, 05, Qx ..
with next-generation data analysis techniques. e N |
PDRA2 [ -G: Combining diverse data
PHDI WP-A: Noxt-gencration Bolzmann solvers ]
PHD2 WP-B: Novel tension-reducing theory |
PHD3 [ WP-D: Cosmological on present and Tuture data
PHD4 [ WP-E: Likelihood-free nested sampling and Bayesian machine leaming
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Conclusions
github.com/handley-lab
» Nested sampling is a multi-purpose numerical tool for:

> Numerical integration § f(x)dV,
> Exploring/scanning/optimising a priori unknown functions,
> Performing Bayesian inference and model comparison.

1n(10°Px)

» It is applied widely across cosmology, particle physics &
machine learning.

> It's unique traits as the only numerical Lebesgue integrator
mean with compute it will continue to grow in importance.
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How does Nested Sampling compare to other approaches?

> In all cases: Modern Nested Sampling
+ NS can handle multimodal functions algorithms can do this in
+ NS computes evidences, partition functions and integrals ~ ()(1005) dimensions
+ NS is self-tuning/black-box
Optimisation Sampling Integration
» Gradient descent » Metropolis-Hastings? » Thermodynamic
— NS cannot use gradients — Nothing beats well-tuned integration
+ NS does not require customised MH + protective against phase
gradients + NS is self tuning trasitions
> Genetic algorithms » Hamiltonian Monte + No.annealing schedule
+ NS discarded points have Carlo? tuning
statistical meaning — In millions of dimensions, > Sequential Monte Carlo
HMC is king — SMC experts classify NS
+ NS does not require as a kind of SMC
gradients + NS is athermal
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Nested Sampling: a user’s guide

1. Nested sampling is a likelihood scanner, rather than posterior explorer.

> This means typically most of its time is spent on burn-in rather than posterior sampling.
» Changing the stopping criterion from 1073 to 0.5 does little to speed up the run, but can make
results very unreliable.

2. The number of live points nje is a resolution parameter.
1
A/ Mive ”
> Set low for exploratory runs ~ O(10) and increased to ~ ((1000) for production standard.

> Run time is linear in nye, posterior and evidence accuracy goes as

3. Most algorithms come with additional reliability parameter(s).
> e.g. MultiNest: eff, PolyChord: niepeats-
> These are parameters which have no gain if set too conservatively, but increase the reliability.
> Check that results do not degrade if you reduce them from defaults, otherwise increase.
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Time complexity of nested sampling

Dynamically add live points near peak

®  Original samples
®  Dynamically added samples

=

§ Run

g terminates Direction of iteration

£

s

g

03_ AlogX = 1/n,

01 . . . . .
T
. . . . -H 0
> X-axiIs: |og—com pression of live points

log X

» Area oc posterior mass » Time complexity

v

Shows Bayesian balance of likelihood vs prior T = Mive X Tz % Taampler X Dk (P]|7)
- wve Sampler

v

Run proceeds right to left

> Run finishes after bump (typical set) > Error complexity | ooca/Dkr (P||7)/ Mive
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Occam’s Razor [2102.11511]

» Bayesian inference quantifies Occam's Razor:

> “Entities are not to be multiplied without necessity”

— William of Occam
> “Everything should be kept as simple as possible, but not simpler”

— “Albert Einstein”
» Properties of the evidence: rearrange Bayes' theorem for parameter estimation

0
= —— = log Z = log L(0) — Iogm.
Z
» Evidence is composed of a “goodness of fit” term and “Occam Penalty”.

» RHS true for all . Take max likelihood » Be more Bayesian and take posterior average
value 0.:

to get the “Occam’s razor equation”

log Z = —X?nin — Mackay penalty.

log Z = (log L)p — DkL.-
» Natural regularisation which penalises models with too many parameters.
Will Handley <wh260@cam.ac.uk>
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Kullback Liebler divergence

» The KL divergence between prior 7 and
posterior P is is defined as:

Dk = <Iog ZT—)>P = fP(H) log P((Z)) do.

s

» Whilst not a distance, D = 0 when P = 7.

» Occurs in the context of machine learning as
an objective function for training functions.

» In Bayesian inference it can be understood
as a log-ratio of “volumes”:

V,
DKL X |Og V:

(this is exact for top-hat distributions).
Will Handley <wh260@cam.ac.uk>
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Statistics: fast estimation of small p-values [2106.02056](PRL)

» Nested sampling for frequentist computation!?

» p-value: P(A > \*|Hp) — probability that test
statistic A is at least as great as observed \*.

» Computation of a tail probability from sampling
distribution of A under Hg.

» For gold-standard 50, this is very expensive to
simulate directly (~ 10° by definition).

» Need insight/approximation to make efficient.

> Nested sampling is tailor-made for this, just make
switch: X & p, Lo A, 0 < x.

» The only real conceptual shift is switching the
integrator from parameter- to data-space.

Will Handley <wh260@cam.ac.uk>

Speed-up TS evaluations (proxy for speed)
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Exploration of phase space [2106.02056]
-

» Nested sampling for cross section
computation/event generation.

> Numerically compute collisional cross section

o= j do|M|?,
Q

99 = 39, 99 = 49 (2% 0)

Q phase space of kinematic configurations
®, each with matrix element M(®).

» Current state of the art e.g. HAAG
(improvement on RAMBO) requires
knowledge of M(®).

» Nested sampling can explore the phase space | - FJLHHMLM .
and compute integral blind with comparable " E”F’”Hw it

3 HaAGNS

Combined error

efficiency.

prljet 1) [GeV]
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Quantification of fine tuning [2101.00428] [2205.13549]

» Example: Cosmological constraints on decaying
axion-like particles [2205.13549].

> Subset of parameters &, m,, 7, 82,1 ALP fraction, _
mass, lifetime and photon coupling. (Also vary

[Gev™

Yavy

cosmology, 7, and nuisance params)
» Data: CMB, BBN, FIRAS, SMM, BAO.

» Standard profile likelihood fit shows ruled out
regions and best-fit point.
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Quantification of fine tuning [2101.00428] [2205. 13549]

GAMBIT: CosmoBi

» Example: Cosmological constraints on decaying
axion-like particles [2205.13549].

> Subset of parameters &, m,, 7, g2, ALP fraction,

mass, lifetime and photon coupling. (Also vary
cosmology, 7, and nuisance params)

» Data: CMB, BBN, FIRAS, SMM, BAO.

» Standard profile likelihood fit shows ruled out
regions and best-fit point.
> Nested sampling scan:
» Quantifies amount of parameter space ruled out
with Kullback-Liebler divergence Dki,.
> ldentifies best fit region as statistically irrelevant
from information theory/Bayesian.
> No evidence for decaying ALPs. Fit the data
equally well: but more constrained parameters

create Occam penalty.
Will Handley <wh260Q@cam.ac.uk>
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Quantification of fine tuning [2101.00428] [2205.13549]

» Example: Cosmological constraints on decaying
axion-like particles [2205.13549].

> Subset of parameters &, m,, 7, g2, ALP fraction,
mass, lifetime and photon coupling. (Also vary
cosmology, 7, and nuisance params)

» Data: CMB, BBN, FIRAS, SMM, BAO.

» Standard profile likelihood fit shows ruled out
regions and best-fit point.

> Nested sampling scan:

» Quantifies amount of parameter space ruled out
with Kullback-Liebler divergence Dxr.,.

> ldentifies best fit region as statistically irrelevant
from information theory/Bayesian.

> No evidence for decaying ALPs. Fit the data
equally well: but more constrained parameters

create Occam penalty.
Will Handley <wh260@cam.ac.uk>

GAMBIT :CosmoBit
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Primordial power spectrum Pk (k) reconstruction [1908.00906]

» Traditionally parameterise the primordial power log Pr (k)
spectrum with (As, ns)

Prlk) - A (:*) ne—1

» To add more degrees of freedom, can add I

“running” parameters ny,, (higher order
polynomial in index)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

. . . , log k
» Let the Bayesian evidence decide when you've

introduced too many parameters
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Primordial power spectrum Pk (k) reconstruction [1908.00906]

» Traditionally parameterise the primordial power log Pr (k)
spectrum with (As, ns)

Prlk) - A (:*) ne—1

> To add more degrees of freedom, can add (ki, P1)
“running” parameters ny,, (higher order (ka, P2)
polynomial in index)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

. . . , log k
» Let the Bayesian evidence decide when you've

introduced too many parameters
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Primordial power spectrum Pk (k) reconstruction [1908.00906]

» Traditionally parameterise the primordial power log Pr (k)
spectrum with (As, ns)

Prlk) - A (:*) ne—1

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

. . . , log k
» Let the Bayesian evidence decide when you've

introduced too many parameters
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Primordial power spectrum Pk (k) reconstruction [1908.00906]

» Traditionally parameterise the primordial power log Pr (k)
spectrum with (As, ns)

Prlk) - A (:*) ne—1

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

. . . , log k
» Let the Bayesian evidence decide when you've

introduced too many parameters
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Primordial power spectrum Pk (k) reconstruction [1908.00906]

» Traditionally parameterise the primordial power log Pr (k)
spectrum with (As, ns)

k I‘ls*].
= — (k2,P2) (ka, Pa)
i =ac(£)

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

( kanots ? PNknots )
(ks, P3)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

. . . , log k
» Let the Bayesian evidence decide when you've

introduced too many parameters
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0 internal knots

» Traditionally parameterise the primordial power
spectrum with (As, ns)

Pr(k) = As (k—k*) "

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)
w w w w »
o N o1 ~ o
o o o ol o

N
~
o

. . . . 2.50
» Alternative non-parametric technique introduces
a more flexible phenomenological 2.25
parameterisation: “FlexKnots” 2.00 - - -
. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters
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1 internal knot

» Traditionally parameterise the primordial power
spectrum with (As, ns)

Pr(k) = As (k—k*) "

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 2.00 - - -

. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters
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2 internal knots

» Traditionally parameterise the primordial power 200
spectrum with (As, ns)
3.75
k ns—1 .
PR(/() _ As (k_) 3.50
* 3.25

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)
N w
3 8

N
@
=}

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 2.00 - - -

. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters

N
N
a
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3 internal knots

» Traditionally parameterise the primordial power 200 —
spectrum with (As, ns)
3.75
k ns—1 .
PR(/() _ As (k_) 3.50
* 3.25

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)
N w
3 8

N
@
=}

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 2.00 - - -

. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters

N
N
a
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4 internal knots

» Traditionally parameterise the primordial power 200
spectrum with (As, ns)

Pr(k) = As (k—k*) "

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

3.75

In(10'°Pr)
w w w
o N o1
o o o

N
~
o

. . . . 2.50
» Alternative non-parametric technique introduces
a more flexible phenomenological 2.25
parameterisation: “FlexKnots” 2.00 | - - -
. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters
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5 internal knots

» Traditionally parameterise the primordial power 200 e

spectrum with (As, ns) |
3.75 [

k ns—1 3.50

PR(k) = As (k_)
* 325
&
> To add more degrees of freedom, can add 2 3.00

“running” parameters ny,, (higher order
polynomial in index)

2.75

» Alternative non-parametric technique introduces

a more flexible phenomenological 2.25
parameterisation: “FlexKnots" 2.00 2
10~ 10~
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters
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6 internal knots

» Traditionally parameterise the primordial power
spectrum with (As, ns)

k ns—1 3.50
PR(k) = As (k_) .
*

3.25

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)
N w
3 8

N
@
=}

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 200 I

. . . 10-4 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters

N
N
a
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7 internal knots

» Traditionally parameterise the primordial power 200
spectrum with (As, ns)

Pr(k) = As (k—k*) "

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

3.75

In(10'°Pr)
N w w w
~ o N o1
o o o o

N
@
=}

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 2.00 | - - -

. . . 104 103 102 10t
> Let the Bayesian evidence decide when you've k [MpcY

introduced too many parameters
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Bayes Factors

» Traditionally parameterise the primordial power 0
spectrum with (As, ns)

k ns—1
Pr(k) = As <> @ 7
ks £
5 -3
1%

» To add more degrees of freedom, can add <,
“running” parameters ny,, (higher order g
polynomial in index) -

» Alternative non-parametric technique introduces -6

a more flexible phenomenological
parameterisation: “FlexKnots"

» Let the Bayesian evidence decide when you've
introduced too many parameters
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Marginalised plot

» Traditionally parameterise the primordial power 200
spectrum with (As, ns)
3.75
k ns—1 .
PR(/() _ As (k_) 3.50
* 3.25

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

In(10'°Pr)
N w
3 8

N
@
=}

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots” 2.00

> Let the Bayesian evidence decide when you've k [MpcY
introduced too many parameters
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Kullback-Liebler divergences

» Traditionally parameterise the primordial power
spectrum with (As, ns)

Prlk) - A (:*) ne—1

» To add more degrees of freedom, can add
“running” parameters ny,, (higher order
polynomial in index)

» Alternative non-parametric technique introduces
a more flexible phenomenological
parameterisation: “FlexKnots”

» Let the Bayesian evidence decide when you've
introduced too many parameters
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