Data analysis challenges in the signal dominated era

Panel: Van Den Broeck (chair), Green, Sberna, Vijaykumar with contributions from G. Ashton and K. Chandra

IXth Physics and Astrophysics at the eXtreme (PAX-IX) Workshop, King's College London 9am, Tuesday 23/07/2024 (90 minutes)

To the polls...

To Slido

Overview of the session

- 1. Panel introductions
- 2. Panel-introduced challenges
- 3. Other challenges

The panel

Chris Van Den Broeck Utrecht University & Nikhef

Interests: GW parameter estimation, glitch mitigation, tests of GR, dense nuclear environments

Stephen Green

University of Nottingham

Interests: GW parameter estimation, machine learning, black hole perturbation theory, ringdown

Laura Sberna University of Nottingham

Interests:

black hole perturbation theory, ringdown, environmental effects and LISA science

Aditya Vijaykumar Canadian Institute for Theoretical Astrophysics (CITA)

Interests: GW Parameter Estimation, Astrophysics of CBCs and their environments

Challenge 1: Number and length of signals

More signals than we can handle? Is the **speed of PE** rising to the challenge?

Approaches

- Faster likelihoods
 - faster waveforms
 - multi-banding, heterodyning, ROQ, etc.
- Efficient sampling
 - Hamiltonian MC
 - Al-enhanced samplers
- Simulation-based inference
 - Neural networks / amortization

Challenge 1b: Fast alerts for EM follow-up

Pre-merger analysis

BNS signals an hour before merger with XG

 12^{h}

Dax et al (2024)

Relton et al. (2023)

Overlap configuration	$N_{Overlaps}$ by region		
	Strong	Weak	Negligible
BBH+BBH	$5.6^{+9.1}_{-3.3}$	$17.0_{-9.8}^{+27.0}$	$13000.0\substack{+8300.0\\-4900.0}$
BNS+BNS	$0.13_{-0.12}^{+0.71}$	$26.0^{+140.0}_{-25.0}$	$14000.0^{+22000.0}_{-11000.0}$
BNS+BBH	$0.11\substack{+0.18 \\ -0.07}$	$22.0^{+36.0}_{-13.0}$	$13000.0^{+8300.0}_{-4800.0}$

Challenge 2: Overlapping signals

Standard PE frameworks: data =signal + noise

If data = signal A + signal B + noise, this leads to **bias**

Broadly two approaches:

- Hierarchical subtraction
 - Faster, but neglects correlations
- Joint analyses
 - Slower (2x dimensionality), but more precise

Challenge 3: Non-stationary non-gaussian noise

For *long-lived* signals, the noise will be non-gaussian and non-stationary.

Failure to account for these could lead to imperfect estimates e.g. of luminosity distance. Impact on EM follow-up?

Approaches:

- for non-gaussianities (glitches): inpainting (e.g. Zackay et al 2021) or similar methods
- for non-stationary (gaussian) noise:
 breaks the simple form of the frequency domain likelihood.
 Estimate PSD in segments (e.g. Kumar et al 2022) as a function of time? Fully time-domain analyses?
- Simulation-based inference

Zackay et al 2021

Challenge 5: Search for new (astro)physics

Hu and Veitch (2022)

To the polls...

To Slido

Challenge 6: Searches for signals