Discovering Exotica PAX IX, King's College London, July 23-25

Your friendly neighbourhood panel members

Sarah Gossan Hofstra University Stellar collapse, compact objects

Ani Prabhu Princeton University Particles, dark matter, pulsars

José M. Ezquiaga Niels Bohr Institute Lensing, cosmology, testing GR Julian Westerweck University of Birmingham Exotic compact objects, ringdowns

+ special guest Chandana Hrishikesh (gamma ray, pulsars)

The Gravitational Wave Menagerie

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$\langle \rho^2 \rangle \propto P(\theta, \phi)$

$$b) \int_0^\infty \mathrm{d}f \, \frac{|\,\tilde{h}(f)\,|^2}{S_h(f)}$$

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$$\langle \rho^2 \rangle \propto P(\theta, \phi) \int_0^\infty \mathrm{d}f \, \frac{|\tilde{h}(f)|^2}{S_h(f)}$$

Observed SNR dependent on: (1) Signal strength

Challenge 1: The Modelling Problem

- Require (at least sort of) realistic signal predictions
- Approaches:
 - Zeroth order: sine-Gaussian/ ringdown/white-noise burst
 - Pen and paper
 - Semi-analytic/phenomenological models
 - State-of-the-art simulations
 - Population studies?

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$$\langle \rho^2 \rangle \propto P(\theta, \phi) \int_0^\infty \mathrm{d}f \, \frac{|\tilde{h}(f)|^2}{S_h(f)}$$

Observed SNR dependent on: (1) Signal strength (2) Detector sensitivity

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$$\langle \rho^2 \rangle \propto P(\theta, \phi) \int_0^\infty \mathrm{d}f \, \frac{|\tilde{h}(f)|^2}{S_h(f)}$$

Observed SNR dependent on: (1) Signal strength (2) Detector sensitivity (a) Noise floor

Challenge 2: The Instrument Problem Approach: Build all the new detectors!

Jani & Loeb (2021)

Challenge 2: The Instrument Problem Approach: Build all the new detectors!

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$$\langle \rho^2 \rangle \propto P(\theta, q)$$

Observed SNR dependent on: (1) Signal strength

(2) Detector sensitivity (a) Noise floor (b) Antenna power

Challenge 2: The Instrument Problem Approach: Preferential placement for Galactic science

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

$$\langle \rho^2 \rangle \propto P(\theta, q)$$

Observed SNR dependent on: (1) Signal strength

(2) Detector sensitivity (a) Noise floor (b) Antenna power

Assessing challenges: back-to-basics

Polarization-averaged signal-to-noise ratio (SNR) in a single detector

Observed SNR dependent on: (1) Signal strength (2) Detector sensitivity (a) Noise floor (b) Antenna power (3) Ability to recover signal from noise

Challenge 3: The Detection Problem

- losing significant fraction of signal power
- Approaches:
 - Brute force computation
 - Reducing time-frequency search volume

 - When in doubt, AI/ML?

Need analysis tools capable of recovering the signals from noise without

• Multi-messenger counterparts to constrain intrinsic source parameters

Development of targeted, astrophysically-motivated analysis methods

Kuo-Chuan Pan

Radice+2019

		· · · · · · ·	
Abdilmenseless et al	0014		
Andreson et al	2014		
Andresen et al.	2017		
Andresen et al.	2019		
Cerdá Durán et al.	2012		
Dimmehmeier et al.	2008		_
Kuroda et al.	2016		
Kuroda et al.	2017		
Mezzacappa et al.	2020		
Morozva et al.	2010		
Müller et al.	2012		
O'Connor&Couch	2018		
Ott et al.	2013		
Powell&Müller	2018		
Powell&Müller	2020		
Radice et al.	2019		⊲ ⊲@
Richers et al.	2017		
Scheidegger et al.	2010		
Val	2015		
rearrannin ov en.	2010		
		0.1	

Never reach 90% detection efficiency

		· · · · · ·	
Abdilmenseless et al	0014		
Andreson et al	2014		
Andresen et al.	2017		
Andresen et al.	2019		
Cerdá Durán et al.	2012		
Dimmehmeier et al.	2008		_
Kuroda et al.	2016		
Kuroda et al.	2017		
Mezzacappa et al.	2020		
Morozva et al.	2010		
Müller et al.	2012		
O'Connor&Couch	2018		
Ott et al.	2013		
Powell&Müller	2018		
Powell&Müller	2020		
Radice et al.	2019		⊲ ⊲@
Richers et al.	2017		
Scheidegger et al.	2010		
Val	2015		
rearrannin ov en.	2010		
		0.1	

Never reach 90% detection efficiency

		· · · · · ·	
Abdilmenseless et al	0014		
Andreson et al	2014		
Andresen et al.	2017		
Andresen et al.	2019		
Cerdá Durán et al.	2012		
Dimmehmeier et al.	2008		_
Kuroda et al.	2016		
Kuroda et al.	2017		
Mezzacappa et al.	2020		
Morozva et al.	2010		
Müller et al.	2012		
O'Connor&Couch	2018		
Ott et al.	2013		
Powell&Müller	2018		
Powell&Müller	2020		
Radice et al.	2019		⊲ ⊲@
Richers et al.	2017		
Scheidegger et al.	2010		
Val	2015		
rearrannin ov en.	2010		
		0.1	

Never reach 90% detection efficiency

- We are not ready. Please help!
- We need:
 - State-of-the-art simulations for larger waveform banks (phenom models)
 - Neutrino signature to pinpoint in time, EM signature to pinpoint in space
 - Improvements to pipelines for broadband, long-duration signals
 - Development of independent search pipelines targeted to CCSN GWs
 - More sensitive detectors (sure, but shouldn't be first priority)
 - A miracle; maybe Betelgeuse goes off?

GW lensing

- We will detect gravitational lensing of GWs! ("safe-bet" exotica)
- Big lenses (galaxies/clusters of galaxies): $1/10^4 < N_{gw,lens} < 1/100$
- Small lenses (*e.g.* IMBHs): N_{gw,lens} < 1/100
- GWs open **new** regimes in lensing! Lensed GWs **shortcut** to XG!

jose.ezquiaga@nbi.ku.dk

New frontiers

GW lensing interference/diffraction leads to waveform distortions! •

Exotica can be challenging...

- *Template-based searches* could miss these signals
- Beyond GR lensing can lead to birefringence and more

Point lenses ullet

Discover IMBHs/PBHs

• High magnification (caustics)

- Relevant now!
- Sub-halos
 - Exciting for LISA

Quasi-normal modes from non-GR black holes?

- Black hole quasi-normal mode spectra.
- Quantify deviations from black hole prediction.
- Additional modes from scalar-/vectorfields.
- > How to incorporate higher level of complexity in QNMs?

- > Pulsed echoes from trapped GWs.
- Long-duration QNMs.
- \blacktriangleright Bounds from several studies.

- > Relaxing restrictive assumptions?
- Going beyond post-merger effects?
- Balance modelling, tolerant searches, trials factors, impatience?

Exotic Physics in Exotic Frequency Ranges?

Exotic Physics in Exotic Frequency Ranges?

Dark Matter Candidates

Particles vs. Waves

$$N_{\rm dB} = \frac{\rho}{m} \left(\frac{2\pi}{mv}\right)^3 \approx 100 \ \left(\frac{\rho}{0.3 \ {\rm GeV/cm^3}}\right) \left(\frac{m}{10 \ {\rm eV/c^2}}\right)^{-4} \left(\frac{v}{250 \ {\rm km/s}}\right)^{-3}$$

Particle dark matter ($N_{\rm dB} \ll 1$)

Analogy: The fundamental theory of EM is *quantum*, but states with large numbers of photons behave like classical EM waves.

Wave-like dark matter ($N_{\rm dB} \gg 1$)

Bosons with $m \lesssim 10 \text{ eV}/c^2$ behave like classical waves

Dark Matter Candidates

Frequency = $m/2\pi$

Gravitational Waves

Axions/ **Axion-like Particles**

Dark Photons

Scalar DM

Vector DM

Frequency = $m/2\pi$

Gravitational Waves

Axions/ **Axion-like Particles**

Dark Photons

Scalar DM

Vector DM

(Inverse) Gertsenshtein

S

$$= \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} \right) \to -\frac{1}{2} \int d^4x \, j_{\text{eff}}^{\mu} A_{\mu\nu} F_{\alpha\beta} \right)$$

$$j^{\mu}_{\rm eff} \equiv \partial_{\nu} \left(\frac{1}{2} h F^{\mu\nu} + h^{\nu}_{\ \alpha} F^{\alpha\mu} - h^{\mu}_{\ \alpha} F^{\alpha\nu} \right)$$

$$S = \int d^4x \left(-\frac{g_{a\gamma\gamma}}{4} a(x) F_{\mu\nu} \tilde{F}^{\mu\nu} \right) = \int d^4x \, j_{\text{eff}}^{\mu} A_{\mu\nu}$$

$$j_{\rm eff}^{\mu} = \epsilon^{\mu\nu\alpha\beta} g_{a\gamma\gamma}(\partial_{\nu}a)\partial_{\alpha}A_{\beta}$$

Image: Berlin et al. (2022)

Microwave Cavities (e.g. ADMX)

Projected Sensitivities of Axion Experiments

Image: Berlin et al. (2022)

Primordial Black Holes

$$\omega_g = 14 \text{ GHz}\left(\frac{\mu M_{\odot}}{M_{\odot}}\right) \left(\frac{r_{\text{ISCO}}}{r}\right)^{3/2}$$

- Modeling the waveform.
- Evolving frequency, resonant experiment?
- Population modeling?

Exotic compact objects

- Boson and fermion stars?
- Superradiant clouds around PBHs.
- Gravistars, gravitino stars?
- DM blobs?

•

High-Frequency Stochastic GWs

- First-order phase transitions
- Cosmic string
- Inflation/Preheating
- Thermal Plasma

•

Probing Unassociated Fermi-LAT Sources for Potential Gamma Ray Pulsar Detection

Unassociated sources -Gamma-ray sources whose counterparts in other wavelengths (such as radio, X-ray, or optical) have not been identified. **Direct search Data Analysis** Method (DSDA) - This is an extension, of a semicoherent pipeline used to analyse **Continuous Gravitational waves** data, to the Fermi data.

The collaboration between EM-GW is important to study Pulsars.

associations

Description	Identified		Associated	
	Designator	Number	Designator	Numbe
Galactic center	GC	1	9.4.9	1, 6, 4
Young pulsars, identified by pulsations	PSR	135		1.1.1
Young pulsars, no pulsations seen in LAT yet			psr	3
Millisecond pulsars, identified by pulsations	MSP	120		
Millisecond pulsars, no pulsations seen in LAT yet		***	msp	3
Pulsar wind nebula	PWN	11	pwn	
Supernova remnant	SNR	24	snr	1
Supernova remnant / Pulsar wind nebula	SPP	0	spp	11-
Globular cluster	GLC	0	glc	3
Star-forming region	SFR	3	sfr	
High-mass binary	HMB	8	hmb	1
Low-mass binary	LMB	2	lmb	
Binary	BIN	1	bin	2
Nova	NOV	4	nov	
BL Lac type of blazar	BLL	22	ып	143
FSRQ type of blazar	FSRQ	44	fsrq	75
Radio galaxy	RDG	6	rdg	3
Nonblazar active galaxy	AGN	1	agn	
Steep spectrum radio quasar	SSRQ	0	ssrq	2
Compact steep spectrum radio source	CSS	0	CSS	
Blazar candidate of uncertain type	BCU	1	bcu	149
Narrow-line Seyfert 1	NLSY1	4	nlsy1	
Seyfert galaxy	SEY	0	sey	3
Starburst galaxy	SBG	0	sbg	
Normal galaxy (or part)	GAL	2	gal	1
Unknown	UNK	0	unk	13
Total		389	0.0.0	411
Unassociated	* + *		4.8.4	215

Image courtesy of Fermi Large Area Telescope (LAT) 4FGL-DR3 data release.

Chandana Hrishikesh

4FGL DR3

Table 5. LAT 4FGL-DR3 Source Classes

D A Smith et al. 2023, "The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars", arXiv:2307.11132v1

VARIOUS HYPOTHESES

Credit : NASA/DOE/FERMI LAT COLLABORATION; T. LINDEN/UNIVERSITY OF CHICAGO

High resolution, high-energy map of the sky - showcasing new pulsars and millisecond pulsars. Credit: NASA/DOE/FERMI LAT COLLABORATION

Summary

- Development of source-specific searches may be required to improve detection prospects (esp. for long-duration, broad-band emission)
- Looking forward: do we require better coordination to avoid waste of resources (time, computation,+)
- In the ultra-HF regime (10kHz+): require more sources of interest for GW searches
- power pipelines enough?
- detection?

Require better understanding (modelling+) of GW exotica to search for it

New physics: how do we prepare to detect the unknown? Are burst/excess-

What do *you* think will be our first "non-garden variety CBC"/exotic GW