Low-energy atmospheric neutrinos and DSNB in Super-Kamiokande

Bei Zhou

Research Associate, Theoretical Physics Department, Fermi National Accelerator Laboratory Associate Fellow, Kavli Institute for Cosmological Physics, University of Chicago

Based on arXiv: 2311.05675 by Bei Zhou, John Beacom

Bei Zhou (Fermilab)

Diffuse Supernova Neutrino Background (DSNB)

What Determines the DSNB Flux

Bei Zhou (Fermilab)

Diffuse Supernova Neutrino Background (DSNB)

Signal

Bei Zhou (Fermilab)

Why do we study DSNB?

- (Almost) Same physics as galactic supernova neutrinos
 - i. SN physics (unreachable by photons)

(explosion mechanism, v mixing)

ii. Particle physics

(electric dipole/magnetic moment, BSM)

- More than galactic supernova neutrinos (Cosmic rate of dark collapses, core collapses, and star formation)
- Will be the first (< 100 GeV) neutrino source at cosmic distance

DSNB detection

 Super-Kamiokande (SK) (Water Cherenkov Detector)

• Detection process $\overline{v}_e + p \rightarrow n + e^+$ (Inverse Beta Decay)

 ~ 5 events/yr (theory prediction) So ~ 50--100 events collected so far, but not identified.
 (Hyper-Kamiokande will be ~50 events/yr)

Large Backgrounds

 $\nu_e(\bar{\nu}_e) + H/O \rightarrow X + e^-(e^+)$

Bei Zhou (Fermilab)

SK-Gd, New Era of DSNB Detection

- Add Gd (Gadolinium) to SK water
 (Beacom & Vagins, PRL 2004, hep-ph/0309300)
- Enable SK to detect neutrons (multiplicity, etc.) (neutron tagging)
- SK \rightarrow SK-Gd, on going
- Improve DSNB detectability

DSNB	Atm. v bkgd.
100% one neutron	<~ 50% one neutron

Bei Zhou (Fermilab)

Goal of Our Work

Study the underlying physics

- Atm nu flux and oscillation
- Nu-nucleus (water) interactions
- Propagations of secondaries in water (π/μ/neutron/proton)
- Detection physics of Super-K

(No systematic study before)

• Find ways to further reduce the background

Part 1: study the underlying physics of the atm nu background Guidance: reproduce Super-K data

Super-K's high-energy atmospheric neutrino data

Used, lower E, relevant

Not used, higher E, not relevant

Data from SK collaboration (SK-I only), PRD, 2005, hep-ex/0501064, measuring nu oscillations (1510.08127 of SK collaboration has updated measurements but no charged lepton data published)

Bei Zhou (Fermilab)

Basic Calculational Framework

Atmospheric v fluxes, oscillations, uncertainties

Atmospheric v flux (Input) : < 100 MeV: FLUKA2005 > 100 MeV: HKKM2014

Battistoni et al., Astropart.Phys. 2015 Honda et al., PRD 2015

Neutrino mixing: 3v framework + matter effect

Uncertainties:

10—100 MeV: ~25%,

0.1— 1.0 GeV: ~20%,

1.0— 10 GeV: ~15%, according to refs:

Battistoni et al., Astropart.Phys. 2015 Honda et al., PRD 2007, PRD 2015 Barr et al., PRD 2006; Evans et al., PRD 2017

BZ, John Beacom, arXiv: 2311.05675

Atmospheric v fluxes, oscillations, uncertainties

Atmospheric v flux (Input) : < 100 MeV: FLUKA2005 > 100 MeV: HKKM2014

Battistoni et al., Astropart.Phys. 2015 Honda et al., PRD 2015

Neutrino mixing: 3v framework + matter effect

Uncertainties:

10—100 MeV: ~25%,

- 0.1— 1.0 GeV: ~20%,
- 1.0— 10 GeV: ~15%, according to refs:

Battistoni et al., Astropart.Phys. 2015 Honda et al., PRD 2007, PRD 2015 Barr et al., PRD 2006; Evans et al., PRD 2017

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

Neutrino-nucleus interactions

We use GENIE v3.02.02:

We use two different model sets of GENIE:

	G18_10a_02_11b (LFG-NAV)	G18_02a_00_000 (RFG-LS)
Nucl. model	Local Fermi gas	Rel. Fermi gas + SRC
Quasielastic scattering	Nieves+2004 (NAV) w/ Coulomb effect	Llewellyn-Smith w/o Coulomb eff.
2p2h	NSV	Dytman
Resonance production	Berger-Sehgal	
Final-state interactions	INTRANUKE/hA 2018 model	

Neutrino-nucleus interactions

vµ/vµbar

Interaction types:

 \lesssim 1.0 GeV: Quasi-elastic scattering (QES) ~1-few GeV: Resonance productions (RES) \gtrsim few GeV: Deep-inelastic scattering (DIS)

Uncertainties:

An overall uncertainties of ~20% for hundreds MeV, even larger for sub-100 MeV

e.g., SNO Collaboration, ApJ 2006 Super-K Collaboration, PRD 2016

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

Neutrino-nucleus interactions

ve/vebar

Interaction types:

≤ 1.0 GeV: Quasi-elastic scattering (QES) ~1–few GeV: Resonance productions (RES) ≥ few GeV: Deep-inelastic scattering (DIS)

Uncertainties:

An overall uncertainties of ~20% for hundreds MeV, even larger for sub-100 MeV

e.g., SNO Collaboration, ApJ 2006 Super-K Collaboration, PRD 2016

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

We reproduced SK High-Energy Atm. v Data

BZ, John Beacom, arXiv: 2311.05675

So, our basic framework is correct

Data from SK collaboration (SK-I only), PRD, 2005, hep-ex/0501064

Bei Zhou (Fermilab)

SK-IV Super-K's low-energy data for atmospheric nu background (for DSNB searches)

SK collaboration, PRD, 2021, arXiv:2109.11174 DSNB search

Bei Zhou (Fermilab)

Super-K's low-energy data for atmospheric nu background (for DSNB searches)

SK collaboration, PRD, 2021, arXiv:2109.11174 DSNB search

SK collaboration, PRD, 2012, arXiv:1111.5031 DSNB search

Basic Calculational framework, naïve calculation for LE data

Detector exposure (~1500 days for SK-I)

Full calculational framework, for LE data

SK analysis cuts

- FV cut; Spallation cut; Solar cut;...
- Double peak cut, Sub-event cut...
- Pion cut; Multi-ring cut; Cherenkov angle cut; ...

Our interpretation: we throw away events w/

- Muons and other charged particles above Cherenkov threshold
- Events with π
- Nuclear γ

SK analysis cuts

- FV cut; Spallation cut; Solar cut;...
- Double peak cut, Sub-event cut...
- Pion cut; Multi-ring cut; Cherenkov angle cut; ...

Our interpretation: we throw away events w/

- Muons and other charged particles above Cherenkov threshold
- Events with π

We don't throw away events with nuclear gamma rays

Bei Zhou (Fermilab)

Physical correction 1: μ^- capture

~79%

$$\nu_{\mu} + O \rightarrow \mu^{-} + X$$
$$\nu_{\mu} + H \rightarrow \mu^{-} + X$$
$$\bar{\nu}_{\mu} + O \rightarrow \mu^{+} + X$$
$$\bar{\nu}_{\mu} + H \rightarrow \mu^{+} + X$$

Atomic capture (1s state)

Decay in bound state $\mu^- \rightarrow e^- + \nu_{\mu} + \bar{\nu}_e$

Bkgd for DSNB~

Electron cloud

 μ^{-}

016

Bei Zhou (Fermilab)

~21%

The numbers are from our FLUKA simulation

King's College London

→ Nuclear capture $\mu^- + p \rightarrow \nu_\mu + n (n + \gamma)$ Won't be bkgd for DSNB~

Physical correction 2: NC π^+

 π^+ kinetic energy < 72 MeV, invisible in SK invisible $\pi^+ \rightarrow \mu^+ \rightarrow e^+$, background for DSNB Increase invisible muon # by 30% (LFG-NAV) or 20% (RFG-LS)

1.
$$v_x + p$$
 (O or H) $\rightarrow v_x + n + \Delta^+$ (NC RES, dominant)
 $\Delta^+ \rightarrow n + \pi^+$
2. $v_x + p/n$ (O or H) $\rightarrow v_x + \pi^+$ (+ p) (NCQES + FSI)

NC π^0 and π^- are irrelevant

 π^0 decay to two γ 's

 π^- mostly 1) atomic capture 2)~100% nucl. capture, $\pi^- + O \rightarrow p's$, n's, $\gamma's$

Physical correction 3: Coulomb distortion

Physical effects:

- Increase (decrease) momentum for + (-) charged particle:
- 1) Distort the charged particle energy
- 2) Decrease (increase) overlap with nuclear wavefunction, hence σ

We use:

Modified eff. moment. approx. (MEMA). (Engel, PRC 1998)

$$V_{electrostatic} = \frac{3Z\alpha}{2R_A}$$

) Induce a shift of the total energy2) Rescale scattering amplitude

Impact on, e.g., the invisible muon component:

- vµ+O: increases by $\simeq 35\%$
- vµbar+O: decreases by $\simeq 25\%$
- vµbar+H: decreases by $\simeq 10\%$
- NC π^+ : decreases by $\simeq 10\%$

Detector-effect correction: Cherenkov threshold

Theoretical Cherenkov threshold: β (particle speed) > 1/n (photon speed)

n, refractive index

Bei Zhou (Fermilab)

However, detector has trigger threshold \rightarrow Real Cherenkov threshold higher.

We

- Chose 17 p.e. as the threshold.
- $\Rightarrow \simeq 340$ Cherenkov photons
- $\Longrightarrow \simeq 73$ MeV for μ and $\simeq 91$ MeV for π

(Consistent with SK's detector simulations by Chenyuan Xu from SK collaboration)

Increase the invisible μ component by $\simeq 30\%$.

We reproduced SK Low-Energy Atm. v bkgd: LFG-NAV

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

We reproduced SK Low-Energy Atm. v bkgd: RFG-LS

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

SK Low-Energy Atm. v bkgd: predicted parent nu distribution

BZ, John Beacom, arXiv: 2311.05675

Results from the LFG-NAV model set (similar for RFG-LS)

Bei Zhou (Fermilab)

SK Low-Energy Atm. v bkgd: predicted parent nu spectrum

BZ, John Beacom, arXiv: 2311.05675

Results from the LFG-NAV model set (similar for RFG-LS)

Bei Zhou (Fermilab)

Conclusion

BZ, John Beacom, arXiv: 2311.05675

Bei Zhou (Fermilab)

Thanks for your attention!

Bei Zhou (Fermilab)

Goal of Our Work: further reduce the one-neutron atm. v bkgd

Both model sets use: SIS&DIS: Bodek-Yang coherent production of pions: Berger-Sehgal hadronization: AGKY

Other important effects are also included, including Pauli blocking, shadowing, anti-shadowing, EMC, de-excitation, etc.

Interpretation of analysis cuts: nuclear gamma rays

- Theoretical
 - GENIE uses *Ejiri* 1993 (theory) and *Kobayashi*+ 2005 (experiment)
 - BR $\gamma \sim 50\%$ overall, mostly ~6-8 MeV
 - Consistent with Ankowski+ 2012 (theory), T2K PRD 2014 (experiment).
 - However, above are for one-nucleon kick out. But for our case, multi-nucleon kick-out is very common...
- Experimental
 - We inquired several SK people, but they didn't know how much they cut.
- What we do