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I

Single mode

cavities



Experimental setup

To start, we have a closer look at an experimental setup
which can be modelled quantum and classically:



Predictions of Maxwell’s equations

Fabry-Perot cavity:



Cavity transmission and reflection rates

These rates depend only on the cavity parameters n and L
and on the frequency of the incoming light ωL:

Tcav(ωL) =

∣∣∣∣ 1− r2

1− r2 e2inkLL

∣∣∣∣2 ,
Rcav(ωL) =

∣∣∣∣ 1− e2inkLL

1− r2 e2inkLL
r

∣∣∣∣2 ,
where r ≡ 1− n

1 + n
: Fresnel coefficient



The quantum optics of atom-cavity systems

Questions:

• Is it enough to consider only a single cavity mode?
• How can we reproduce the Fabry-Perot cavity behaviour?
• How can we model reflection by mirror surfaces?
• How can we derive spontaneous cavity decay rates?



II

The input-output

formalism



Experimental setup



III

Alternative models of
FP cavities



A quantum optical traveling-wave model

Traveling-wave cavity Hamiltonian:

Hlaser = ℏΩ
(
aR eiωLt +H.c.

)
Hfiber = ℏωL

(
a†LaL + a†RaR

)
+

1

2
ℏJ

(
aRa

†
L + aLa

†
R

)
ρ̇ = − i

ℏ
[H, ρ] +

∑
X=L,R

κX

(
aXρa

†
X − 1

2
ρa†XaX − 1

2
a†XaXρ

)

• The laser excites a traveling field mode inside the resonator.

• Photons in the aL,R mode are converted into aR,L photons at a rate J .

• We assign different decay channels to photons with different directions.



Consistency conditions

The predictions of this model are consistent
with the predictions of Maxwell’s equations,
if we choose:

κ = − 2c

nL
ln r =

4

(n+ 1)2
· c
L

J(ωL) =
2c

nL
· n− 1

n+ 1
· sin (nkLL)

• The spontaneous cavity decay rate κ depends only on n and L.

• The bouncing rate J(ωL) contains an interference term.



Special cases

• Very long cavity: J = 0 and κ = 0 for L→ ∞
• Resonant cavity: J = 0 and κ ̸= 0

• Very short cavity: J is relatively large.

a± ≡ 1√
2
(aL ± aR)

⇒ Hfiber = ℏ(ωL + J)a†+a+ + ℏ(ωL − J)a†−a−

The standing wave modes are highly degenerate.
The cavity is effectively single-mode.

Our model reproduces known results!



Phenomenological approaches
do not always work!!!!!

We do not know, how to model mirrors!



IV

Local photons



A gauge-independent quantisation of the EM field



A physically motivated quantisation of the EM field

Standard quantum
physics approach:

• We identify canonical
variables and impose
canonical commutator
relations.

(Difficult task!)

A more “physically motivated”
approach:

• We identify the distinguishable states
of the classical system and map these
onto pairwise orthogonal quantum
states.

• Hamiltonian and observables must be
such that the expectation values of
the ”most classical” quantum states
evolve classically.

In this way, any classical experiment can
also be described by quantum physics.



Light as waves

The basic solutions of MW’s equations in free space are waves:(
∂2

∂x2
− 1

c2
∂2

∂t2

)
O(x, t) = 0 with O = E,B



An alternative way of solving wave equations

According to d’Alembert’s principle, any local wave packet
which moves at the speed of light solves MW’s equations:(

∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)
O(x, t) = 0 with O = E,B



Light as “blips”

The basic solutions of MW’s equations in free space are wave packets of
any shape which travel at the speed of light either left or right:(

∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)
O(x, t) = 0 with O = E,B

Speed of light, c

x

Wave
packet

This includes highly-localised WPs
which remain localised!



Local carriers of light

Suppose the EM field consists of blips (= bosons localised in position)
with annihilation operators asλ(x) which travel at the speed of light.

s = ±1 : direction of propagation
λ = H,V : polarisation

x ∈ (−∞,∞) : position

Speed of light, c

x

Wave
packet



Commutator relations

The state of a single local excitation:

|1sλ(x)⟩ = a†sλ(x)|0⟩

These states are pairwise
orthogonal for bosonic blips:

⟨1sλ(x)|1s′λ′(x′)⟩ = ⟨0|asλ(x)a†s′λ′(x
′)|0⟩

=
[
asλ(x), a

†
s′λ′(x

′)
]

= δs,s′ δλ,λ′ δ(x− x′)



Transformation into momentum space

x-space solutions:

x ∈ (−∞,∞)
λ = H,V
s = ±1

k-space solutions:

k ∈ (−∞,∞)
λ = H,V
s = ±1

When transferring the asλ(x) via a Fourier transform into momentum
space, we obtain bosonic ãsλ(k) for monochromatic photons:

ãsλ(k) =
1

(2π)1/2

∫ ∞

−∞
dx e−iskx asλ(x)

asλ(x) =
1

(2π)1/2

∫ ∞

−∞
dk eiskx ãsλ(k)



The basic building blocks of light

There are different carriers of light,
local and non-local:

1. Monochromatic waves:
These correspond either to standing
or to travelling waves.

2. Localised wave packets:
blips = bosons localised in position

Single-photon wave packets of any shape
can be obtained by superposing either
waves or blips.



The Schrödinger equation

s = −1: left-moving WPs
s = +1: right-moving WPs

Speed of light, c

x

Wave
packet

The dynamical Hamiltonian Hdyn

is the generator of dynamics:

∂

∂t
|ψ(t)⟩ = − i

ℏ
Hdyn|ψ(t)⟩

The Hamiltonian Hdyn has positive and negative eigenvalues.



The dynamical Hamiltonian

Speed of light, c

x

Wave
packet

In the Heisenberg picture: asλ(x, t) = asλ(x− sct, 0)

=⇒ Hdyn = −iℏ
∑
s,λ

∫ ∞

−∞
dx sc a†sλ(x

′)
∂

∂x
asλ(x)

=
∑
s,λ

∫ ∞

−∞
dk ℏck ã†sλ(k)ãsλ(k)



Frequencies and wave numbers

right-moving
negative-frequency

photons

left-moving negative-
frequency

photons

left-moving
positive-frequency

photons

right-moving
positive-frequency

photons

frequency ck

wave number sk0



Electric and magnetic field observables

Consistency with MW’s equations applies when

E(x) =
∑
s=±1

R
(
asH(x) ŷ + asV(x) ẑ

)
B(x) = −

∑
s=±1

s

c
R
(
asV(x) ŷ − asH(x) ẑ

)

R: regularisation operator;
independent of x and of t



The energy of monochromatic photons

• Suppose one atom with energy ℏω0 emits exactly one photon.

• Due to resonance, the photon resembles a monochromatic ω0-wave.

• Energy conservation implies that the photon has the energy ℏω0.



Field observables in position space

⇒ Esλ(x) =

∫ ∞

−∞
dx′ g(x, x′) asλ(x

′)

Bsλ(x) =
s

c

∫ ∞

−∞
dx′ g(x, x′) asλ(x

′)

with g(x, x′) =

(
ℏc

2π2ε0A

)1/2 ∫ ∞

−∞
dk

√
|k| eik(x−x′)

= −
(

ℏc
4πε0A

)1/2
1

|x− x′|3/2



A physical picture of blips

x
x0

E(x) sc

Comments:

• Local blips at x0 can be felt everywhere.

• Localised fields can only be created by a non-local source.

• We now have positive and negative frequency photons.



Similarities with gravitational fields

Local photons are similar to massive particles: they are local carriers
of fields. In analogous classical situations, it is often easier to model
the dynamics of the carriers than of the fields.



The energy of light

• By definition, Hdyn also represents the energy of the quantised EM field.

• The eigenvalues of the energy observable Heng should be only positive.

Hence:

Heng =

{
−Hdyn for k < 0
+Hdyn for k ≥ 0

=
∑
s,λ

∫ ∞

−∞
dk ℏc|k| a†sλ(k)asλ(k)

With respect to the complex field vectors E†(x) and B†(x):

Heng =
A

4

∫ ∞

−∞
dx

[
εE†(x) · E(x) + 1

µ
B†(x) ·B(x)

]



The dynamical momentum

s = −1: left-moving WPs
s = +1: right-moving WPs

Speed of light, c

x

Wave
packet

The momentum pdyn is the generator
for the spatial translation of quantum states:

∂

∂x
|ψ(t)⟩ = i

ℏ
pdyn|ψ(t)⟩

=⇒ pdyn =
∑
s,λ

∫ ∞

−∞
dk ℏsk a†sλ(k)asλ(k)



Relation to field observables

The dynamical momentum pdyn of light can be written in the form

pdyn =

{
−p for k < 0 ,
+p for k ≥ 0

with p defined such that

p x̂ =
εA

4

∫ ∞

−∞
dx

[
E†(x)×B(x)−B†(x)× E(x)

]



The Abraham-Minkowski controversy

Position

t1r1

Time

Infinitesimally-thin
mirror interface 

0

t-1
r-1

Position

Time

Dielectric 
medium

0

Position

Time

Finite-sized
dielectric slab

-d

a b c

d

In classical optics, it is not known whether the momentum of light
increases (Minkowski, 1910) or decreases (Abraham, 1909)
when light enters a dielectric medium.



A locally-acting mirror Hamiltonian

Minkowski
was right!

In the presence of a mirror interface at x = 0,
the Hamiltonian of the quantised EM field
becomes Hmir = Hdyn +Hint with

Hint =
∑

λ=H,V

ℏΩ a†−1λ(0) a1λ(0) + H.c.

HERMITIAN!

This Hamiltonian can be analysed using a
Dyson series expansion to predict the dynamics
of the momentum of any incoming light.



V

A local photon approach

to optical cavities
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A locally-acting cavity Hamiltonian

In the presence of mirror interfaces at x = 0 and at x = L,
the Hamiltonian of the quantised EM field becomes

Hint = Hdyn +
∑

λ=H,V

ℏΩ a†−1λ(0) a1λ(0) + H.c.

+
∑

λ=H,V

ℏΩ a†−1λ(L) a1λ(L) + H.c.

This Hamiltonian can be analysed using a Dyson series expansion
or master equations.



VI

Strange effects:

Casimir, Doppler and Unruh



Casimir’s effect

• Already in 1948, Casimir predicted an
attractive force between two metallic
mirrors for small distances d.

• This effect can be understood as a
consequence of boundary condi-
tions imposed by the mirrors and is
attributed to vacuum fluctuations.

• Obtaining a finite force requires
regularisation procedures.



The mirror image method

A mirror changes amplitude and direction
of the incoming blip excitations.

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).



The origin of the Casimir effect

4

ba

c d

Figure 2: a. Because of the regularisation operator R in Eq. (6), local blip excitations contribute to local electric and magnetic
field expectation values everywhere along the x axis (cf. Eq. (8)). b. Since a blip on one side of a highly reflecting mirror
cannot contribute to the field expectation value on the other side, its field contribution must be folded back on itself. This
e↵ect alters the electric and magnetic field observables in the presence of a mirror. c. In the presence of two highly reflecting
mirrors, blips outside the cavity cannot contribute to field expectation values on the inside. Moreover, the field contributions
of blips on the inside need to be folded as in the case of one mirror. Now, however, the field contributions must be folded
infinitely many times (cf. Eq. (18) in Methods). d. Comparing two cavities of di↵erent sizes, we see that the behaviour of the
field contribution is now dependent on the cavity width.

as illustrated in Fig. 2(a), local blip excitations con-
tribute to electric and magnetic field expectation values
everywhere along the x axis. The commutator between
as�(x0, t) and E(x, t), for example, vanishes rapidly as
the distance |x � x0| increases, making this non-local ef-
fect small. However, it is not negligible and, as we shall
see below, the non-locality of electric and magnetic field
observables constitutes the origin of the Casimir e↵ect.

B. Optical cavities and the Casimir e↵ect

When placed between the mirrors of an optical cav-
ity, blips are continually reflected back and forth. As
illustrated in Fig. 1(b), they move on closed trajectories
and travel through the same location x many times. Al-
though the blips change direction when met with either
of the mirrors, between the cavity walls they propagate
freely. Therefore, blips can be used to describe the EM
field both in the absence and in the presence of an optical
cavity. However, in order to capture their changed beha-
viour, we must replace the free space equation of motion
in Eq. (1) by an alternative constraint. The dynamics
of blips approaching the cavity walls can be described,
for example, by a locally acting mirror Hamiltonian [23].
Another possibility to obtain blip operators which move
along folded worldlines is to take inspiration from the
mirror image method of classical electrodynamics [30]
and to map the dynamics of blips onto analogous free

space scenarios.
By adopting a local description, it is tempting to as-

sume that the field expectation values of blips that are
not in contact with the cavity do not depend on the pres-
ence or absence of highly reflecting mirrors at a spatially
removed location. However the local electric and mag-
netic field observables E(x, t) and B(x, t) are not the
same inside an optical cavity and in free space. As we
have seen above (cf. Fig. 2(a)), in free space, local blip
excitations contribute to field expectation values every-
where along the x axis. When constructing field observ-
ables in the presence of an optical cavity, we must take
into account that its mirrors shield the inside of the cav-
ity from light sources on the outside. We must therefore
ensure that blips on the outside of the cavity do not con-
tribute to electric and magnetic fields inside (Fig. 2(b)).
Analogously, we must ensure that blips on the inside no
longer contribute to fields on the outside.

Here we are especially interested in highly reflecting
mirrors with an amplitude reflection rate r = �1 with
no light entering the cavity from the outside and no leak-
age of light out of the resonator. We then hypothesise
that the free space field amplitude contributions of local
blips at positions x with x 2 (�D/2, D/2) to local field
observables beyond the cavity mirrors are reflected back
where they contribute only to local field observables on
the inside. More concretely, as illustrated in Figs. 2(b)-
(d), when in contact with one of the mirror surfaces at
positions x = ±D/2, the field amplitudes of as�(x, t)



The electric field inside the cavity

Suppose X restricts the Hilbert
space to blip excitations at
positions x ∈ (−D/2, D/2).

E
(in)
sλ (x, t)

=

∞∑
n=−∞

X
(
E

(free)
sλ (x+ 2nD, t)

−E
(free)
−sλ (−x+ (2n− 1)D, t)

)
blips inside the cavity cannot create fields outside
and vice versa.



The zero point energy of the EM field

H
(in)
ZPE =

ℏc
4π

∞∑
n,m=−∞

∫ D/2

−D/2

dx

∫ D/2

−D/2

dx′

[
|(x+ x′ + (2n− 1)D)(x+ x′ + (2m− 1)D)|−3/2

+ |(x− x′ + 2nD)(x− x′ + 2mD)|−3/2
]

= − ℏc
2πD

∞∑
m=−∞

1

m2
⇒ FCasimir = −dHZPE

dD
= −πℏc

6D2

The Casimir effect is due to interference effects of evanescent fields
belonging to opposite sides of the cavity.



The relativistic Doppler effect

The relativistic Doppler effect predicts frequency, wavelength
and amplitude changes between two moving observers.



Alice and Bob experience space and time differently

xA

tA

Bob’s 
trajectory

tA
tA

(2)

(1)

xB

tB

Alice’s 
trajectory

tB
tB

(2)

(1)Light
line

Light 
line

(a) (b)

𝜒A 𝜒B0 0

We describe each light-like world-line by natural coordinates χA = xA−sctA
and χB = xB − sctB and blip annihilation operators a(χA) and b(χB).



Operator transformations

Alice and Bob experience the same blips when referring to the same
point in the spacetime diagram.

χA = −ct(1)A = −(c− vB)t
(2)
A

χB = −(c+ vB)t
(1)
B = −ct(2)B

χB/χA = κ , t
(1)
B /t

(1)
A = t

(2)
A /t

(2)
B = γ

Hence:

χA = γ(1− sβ)χB with γ = [
√

1− β2]−1/2 , β = vB/c

⇒ bsλ(χB) = [γ(1− sβ)]
1/2

asλ(χB)



The Unruh effect

The Unruh effect predicts the presence of thermal photons in the reference
frame of an accelerating observer. However, it can also be modelled consistently
while all observers share a common vacuum:

xA

tA

Bob’s 
trajectory

Light
lines

0(3)

tA(1,2)

(2) (1)

tA(2,2)

tA(1,1)
tA(2,1)

tA(1,3)
tA(2,3)

𝜒A 𝜒A 𝜒A xB

tB

Alice’s 
trajectory

tB

tB

(2,3)

(1,3)

Light
lines

0(3)

tB
tB

(2,2)

(1,2)

(2) (1)

tB
tB

(2,1)

(1,1)

𝜒B 𝜒B 𝜒B



Acceleration without photon pair creation

Suppose, Alice and Bob are placed at the origins of their diagrams and
meet at an initial time when tA = tB = 0. Bob’s velocity vB in Alice’s
coordinate system is known at any time tA. She sends signals at regular
time intervals.

χB =

∫ χA

0

dχ′
A γ(χ

′
A) [1 + sβ(χ′

A)]

⇒ bsλ(χB) =
√
γ(χA)

(
1− sβ(χA)

)
asλ(χA)



VII

Final remarks



Comments

We quantised the EM field in 1D in position space. No-go theorems
have been overcome by doubling its usual Hilbert space and by allowing
for negative frequency photons.

This approach allows us to introduce a
locally-acting mirror Hamiltonian and
to calculate zero point energies.

See also related work by Dirac, Hawton, Cook, Mostafazadeh and Pendry
and others.
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