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Single mode
cavities



Experimental setup

To start, we have a closer look at an experimental setup

which can be modelled quantum and classically:
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Predictions of Maxwell’s equations

Fabry-Perot cavity:
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Cavity transmission and reflection rates

These rates depend only on the cavity parameters n and L
and on the frequency of the incoming light wr;:
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where r = Fresnel coefficient



The quantum optics of atom-cavity systems

Questions:

e Is it enough to consider only a single cavity mode?

e How can we reproduce the Fabry-Perot cavity behaviour?
e How can we model reflection by mirror surfaces?

e How can we derive spontaneous cavity decay rates?

input mirror output mirror
cavity mode

emitter



The input-output
formalism



Experimental setup
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Two-Sided Cavity

A two-sided cavity has two partially transparent mirrors with associated loss coef-
ficients yi1 and Y2, as shown in Fig. 7.2. In this case there are two input ports and
two output ports. The equation of motion for the internal field is then given by an
obvious generalisation as
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Fig. 7.2 A schematic representation of the cavity field and the input and output fields for a
double-sided cavity

h + ©




Alternative models of
FP cavities



A quantum optical traveling-wave model

Traveling-wave cavity Hamiltonian:
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e The laser excites a traveling field mode inside the resonator.
e Photons in the ar, g mode are converted into ag 1, photons at a rate J.
e We assign different decay channels to photons with different directions.



Consistency conditions

The predictions of this model are consistent
with the predictions of Maxwell's equations,

If we choose:
2c | 4 C
K — —————INnNr — . —
nL (n+1)?2 L
2c n—1 |
J(wr) = T Sio (nki,L)

e The spontaneous cavity decay rate x depends only on n and L.
e The bouncing rate J(wy,) contains an interference term.



Special cases

e Very long cavity: J =0and x =0 for L — o0
e Resonant cavity: J =0 and kK # 0

e Very short cavity: J is relatively large.

1
a+r = — (ag, + ar)

V2

=  Hper = Mwr, + J)alaur + A(wr, — J)aT_a_

The standing wave modes are highly degenerate.
The cavity is effectively single-mode.

Our model reproduces known results!



Phenomenological approaches
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Local photons



A gauge-independent quantisation of the EM field
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A physically motivated quantisation of the EM field

Standard quantum A more “physically motivated”

physics approach: approach:

e We identify canonical e We identify the distinguishable states
variables and impose of the classical system and map these
canonical commutator onto pairwise orthogonal quantum
relations. states.

e Hamiltonian and observables must be
(Difficult task!) such that the expectation values of
the "most classical’ quantum states
evolve classically.

In this way, any classical experiment can
also be described by quantum physics.



Light as waves
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The basic solutions of MW's equations in free space are waves:
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An alternative way of solving wave equations

V-E = 0
V-B =0
. 9B
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According to d'Alembert’s principle, any local wave packet
which moves at the speed of light solves MW's equations:
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Light as “blips”

The basic solutions of MW's equations in free space are wave packets of
any shape which travel at the speed of light either left or right:

((’9 +1 3) (Q_lﬁ)()(g;,t):o with O = FE, B

or ¢ Ot or ¢ Ot
Wave Speed of light, ¢
packet —_—

This includes highly-localised WPs
which remain localised!



Local carriers of light

Suppose the EM field consists of blips (= bosons localised in position)
with annihilation operators asy(x) which travel at the speed of light.

s =41 : direction of propagation
A=H,V : polarisation
r € (—oo,00) : position

Wave Speed of light, ¢
packet _—




Commutator relations

The state of a single local excitation:
Laa(®)) = ay()]0)

These states are pairwise
orthogonal for bosonic blips:

(Iaa(@)[Tax (@) = (Olasa(z)al,,,(2")]0)

= |as (), ai,k,(x’)]
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Transformation into momentum space

x-space solutions: k-space solutions:
r € (—00,00) k € (—o0,00)
A=H,V A=H,V
s = +1 s = =1

When transferring the as\(x) via a Fourier transform into momentum
space, we obtain bosonic agy (k) for monochromatic photons:

~ 1 - —iskx

asx(k) = 2m)1/3 /_Ooda:e & asx(x)
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asn(r) = i | dk " asy(k)



The basic building blocks of light

There are different carriers of light,
local and non-local:

1. Monochromatic waves:
These correspond either to standing
or to travelling waves.

2. Localised wave packets:
blips = bosons localised in position

Single-photon wave packets of any shape
can be obtained by superposing either
waves or blips.




The Schrodinger equation

Wave Speed of light, ¢ s = —1: I?ft—mOVin.g WPs
packet —_— s = +1: right-moving WPs

v

The dynamical Hamiltonian Hgyy
is the generator of dynamics:

1

0
() = — Hagn (1)

The Hamiltonian Hgyy, has positive and negative eigenvalues.



The dynamical Hamiltonian

Wave Speed of light, ¢
packet —_—

In the Heisenberg picture:  agz(x,t) = asa(z — sct,0)

— Hgyn = —ihZ/ dxscaiA(x’)%asA(x)
s, A Y T
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Frequencies and wave numbers

frequency ck
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0 wave number sk
right-moving left-moving negative-
negative-frequency frequency
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Electric and magnetic field observables

Consistency with MW'’s equations applies when

E(x) = Z R(asu(z) g + asv(z) 2)
s==+1
Blx) = — > gn(asv(x)g—asH(x)z)
s=+1

‘R: regularisation operator;
independent of x and of ¢



The energy of monochromatic photons

Emission of Light

O

‘ Light Photon

©2003 HowStuffWorks

e Suppose one atom with energy hwgy emits exactly one photon.
e Due to resonance, the photon resembles a monochromatic wgy-wave.

e Energy conservation implies that the photon has the energy hwy.



Field observables in position space
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A physical picture of blips

Comments:
e Local blips at zy can be felt everywhere.
e Localised fields can only be created by a non-local source.

e \We now have positive and negative frequency photons.



Similarities with gravitational fields

Local photons are similar to massive particles: they are local carriers
of fields. In analogous classical situations, it is often easier to model
the dynamics of the carriers than of the fields.



The energy of light

e By definition, Hgy, also represents the energy of the quantised EM field.
e The eigenvalues of the energy observable H,,, should be only positive.

Hence:

7 _ —Hgyn for kK <O
eng —I—den for kK > 0

— Z/ dk helk| al, (k)as (k)
s\ YT
With respect to the complex field vectors £'(z) and B'(z):

Hepng = %/OO dx [5 El(x) - E(x) + %Bf(x) - B(x)

— o0



The dynamical momentum

Wave Speed of light, ¢ s = —1: I?ft—mOVin.g WPs
packet —_— s = +1: right-moving WPs

v

The momentum pqy, is the generator
for the spatial translation of quantum states:
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Relation to field observables

The dynamical momentum pgy, of light can be written in the form

B —p for k<O,
Pdyn = +p fork>0

with p defined such that

pT = % h dx {8T(JJ) x B(z) — B (z) x E(x)

— OO



The Abraham-Minkowski controversy

Time

>
Position

e

Dielectric
medium

In classical optics, it is not known whether the momentum of light
increases (Minkowski, 1910) or decreases (Abraham, 1909)
when light enters a dielectric medium.



A locally-acting mirror Hamiltonian

In the presence of a mirror interface at x = 0,
the Hamiltonian of the quantised EM field
becomes Hy,iy = Hayn + Hiny with

Hiye = Y hQa' ,(0)aix(0) + He.
A=H,V

HERMITTAN!

This Hamiltonian can be analysed using a
Dyson series expansion to predict the dynamics
of the momentum of any incoming light.

Minkowski
was right!



V

A local photon approach
to optical cavities
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A locally-acting cavity Hamiltonian

In the presence of mirror interfaces at + = 0 and at x = L,
the Hamiltonian of the quantised EM field becomes

Hye = Ha+ Y Bal;,(0)a:x(0) + He.
A=H,V

+ ) Bl (L) ain(L) + He.

A=H.,V

This Hamiltonian can be analysed using a Dyson series expansion
or master equations.
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Strange effects:
Casimir, Doppler and Unruh



Casimir’s effect

e Already in 1948, Casimir predicted an
attractive force between two metallic
mirrors for small distances d.

e This effect can be understood as a
consequence of boundary condi-
tions imposed by the mirrors and is
attributed to vacuum fluctuations.

e Obtaining a finite force requires
regularisation procedures.




The mirror image method

A mirror changes amplitude and direction
of the incoming blip excitations.

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).



The origin of the Casimir effect
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Figure 2: a. Because of the regularisation operator R in Eq. (6), local blip excitations contribute to local electric and magnetic
field expectation values everywhere along the x axis (cf. Eq. (8)). b. Since a blip on one side of a highly reflecting mirror
cannot contribute to the field expectation value on the other side, its field contribution must be folded back on itself. This
effect alters the electric and magnetic field observables in the presence of a mirror. c. In the presence of two highly reflecting
mirrors, blips outside the cavity cannot contribute to field expectation values on the inside. Moreover, the field contributions
of blips on the inside need to be folded as in the case of one mirror. Now, however, the field contributions must be folded
infinitely many times (cf. Eq. (18) in Methods). d. Comparing two cavities of different sizes, we see that the behaviour of the
field contribution is now dependent on the cavity width.



The electric field inside the cavity

Suppose X restricts the Hilbert
space to blip excitations at
positions © € (—D/2,D/2).

EY (z,1)
= i X (E(free)(a: +2nD, 1)
_ S )

n——~oo

~ET)(_z 4 (2n - 1)D, t))

blips inside the cavity cannot create fields outside
and vice versa.



The zero point energy of the EM field

| D/2 D/2
HD / da /
0o —D/2 D/2
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The Casimir effect is due to interference effects of evanescent fields
belonging to opposite sides of the cavity.



The relativistic Doppler effect

The relativistic Doppler effect predicts frequency, wavelength
and amplitude changes between two moving observers.




Alice and Bob experience space and time differently

At At
’ ts? /
ts Light " 3 Light
t line line
/XA 0 Xa /XB 0 Xg
Bob’s Alice’s
trajectory trajectory

We describe each light-like world-line by natural coordinates xa = xa —scta
and xp = xp — sctp and blip annihilation operators a(xa) and b(xB).



Operator transformations

Alice and Bob experience the same blips when referring to the same
point in the spacetime diagram.

XA = —ctg) = —(c— UB)tf)
xB = —(c+ ’UB)t](_D)l) = —ct(2)
ol = s DD — 6D ) _

Hence:

xa = Y(1—sB)xp with v=[y/1-82"Y2, B=ug/c

= ba(xs) = [7(1—55)]1/2 asx(xB)



The Unruh effect

The Unruh effect predicts the presence of thermal photons in the reference
frame of an accelerating observer. However, it can also be modelled consistently
while all observers share a common vacuum:

tta Light Ty ~
lines ts>?
t>9 el Alice’s
trajectory ty
(1,3)
tp{z,z) tA / téz,z)
Light t{2

t0:2) , , |
tAEZ’1) A BOb S lines /\// tB(2,1)
trajectory :




Acceleration without photon pair creation

Suppose, Alice and Bob are placed at the origins of their diagrams and
meet at an initial time when t5 = tg = 0. Bob's velocity vg in Alice's
coordinate system is known at any time t5. She sends signals at regular
time intervals.

- / P i 7O [+ s8]

= bal) = r(xa)(1 - s8(xa)) aaa(xa)



VII

Final remarks



Comments

We quantised the EM field in 1D in position space. No-go theorems
have been overcome by doubling its usual Hilbert space and by allowing
for negative frequency photons.

This approach allows us to introduce a
locally-acting mirror Hamiltonian and
to calculate zero point energies.

See also related work by Dirac, Hawton, Cook, Mostafazadeh and Pendry
and others.
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