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Quantum models of light

Quantum Sensing

Image: https://www.idquantique.com/quantum-sensing/applications/materials-science/

Communications Quantum algorithms

Having a complete theory is crucial for describing and understanding complex dynamics.

Light is a versatile resource with many applications.



Electromagnetism in 1D

Maxwell’s equations for 1D fields in the absence 
of charges:
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Monochromatic states

ȁ ۧ1𝑠𝜆(𝑘, 𝑡) = 𝑎𝑠𝜆
† (𝑘, 𝑡)ȁ ۧ0

𝑐

𝑎𝑠𝜆
† (𝑘, 𝑡) – creation operator

ȁ ۧ0  - vacuum state

Orthogonality:

Monochromatic excitations are distinct and evolve independently.

1𝑠𝜆(𝑘, 𝑡) 1𝑠′𝜆′(𝑘′, 𝑡)  =  𝛿𝑠,𝑠′ 𝛿𝜆,𝜆′ 𝛿(𝜔 − 𝜔′)

𝑘 ≥ 0



Electromagnetic waves
Maxwell’s equations describe the propagation of a wave
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Solution:



Bosons localised in position (blip)

A blip is a localised excitation of the EM field. 

ȁ ۧ1𝑠𝜆(𝑥, 𝑡) = 𝑎𝑠𝜆
† (𝑥, 𝑡)ȁ ۧ0

𝑐

𝑎𝑠𝜆
† 𝑥, 𝑡 = න

−∞

∞
𝑑𝑘

2𝜋
𝑒𝑖𝑠𝑘𝑥𝑎𝑠𝜆

† (𝑘, 𝑡)

Orthogonality

1𝑠𝜆(𝑥, 𝑡) 1𝑠′𝜆′(𝑥′, 𝑡)  =  𝛿𝑠,𝑠′ 𝛿𝜆,𝜆′ 𝛿(𝑥 − 𝑥′)

Blips are localised and evolve independently.

Increases the number of degrees of 
freedom



Position and frequency

Monochromatic waves are an ideal solution and have no defined position.

Alternatively, light can be composed of excitations that are localised.

Localised wave 
packet

𝑐

Single-photon wave packet: 
Normalised superposition of 
excitations

𝑐

Aim: to construct a theoretical model of localised excitations.



Electric and magnetic field observables
The EM field observables E(𝑥, 𝑡) and B(𝑥, 𝑡) determine the strength of the electric and 
magnetic fields respectively at a position 𝑥 and a time 𝑡.

E 𝑥, 𝑡 = ෍

𝑠=±1

න

−∞

∞

𝑑𝑥′ 𝑐 ℜ 𝑥 − 𝑥′ 𝑎𝑠𝐻 𝑥′, 𝑡 ෝ𝐲 + 𝑎𝑠𝑉 𝑥′, 𝑡 ො𝐳 + H. c

B 𝑥, 𝑡 = ෍

𝑠=±1

න

−∞

∞

𝑑𝑥′ 𝑠 ℜ 𝑥 − 𝑥′ −𝑎𝑠𝑉 𝑥′, 𝑡 ෝ𝐲 + 𝑎𝑠𝐻(𝑥′, 𝑡)ෝ𝐳 + H. c

ො𝐲, ො𝐳 - unit polarisation vectors ℜ(𝑥 − 𝑥′) – regularisation function

ℜ(𝑥 − 𝑥′) determines how the field responds to blips at different positions.



Non-locality

The regularisation function introduces non-locality:

ℜ 𝑥 − 𝑥′ = −
ℏ

4𝜋𝜀𝑐𝐴
∙

1

ȁ𝑥 − 𝑥′ȁ3/2

𝐴 – area of field
𝜀 – permittivity 

E(x,t)

x

෨𝐸 𝑘, 𝑡  ~ ȁ𝑘ȁ 𝑎𝑠𝜆(𝑘, 𝑡)Fourier transforms:

Blips carry a non-local field!



Alternatively: Field localisation

E(x,t) E(x,t)

Standard Inner product Biorthogonal Inner product



Field localisation

1𝑠𝜆
field(𝑥, 𝑡)bio 1𝑠′𝜆′

field(𝑥′, 𝑡) =  𝛿𝑠𝑠′ 𝛿𝜆𝜆′ 𝛿(𝑥 − 𝑥′)

ห ൿ1𝑠𝜆
field(𝑥, 𝑡) = න

−∞

∞
𝑑𝑘

2𝜋
ȁ𝑘ȁ 𝑒𝑖𝑠𝑘𝑥 𝑎𝑠𝜆

† (𝑘, 𝑡)ȁ ۧ0

By introducing a generalised biorthogonal inner product 
we can enforce that

1𝑠𝜆 (𝑘, 𝑡)bio 1𝑠𝜆 (𝑘′, 𝑡) =  𝛿𝑠𝑠′ 𝛿𝜆𝜆′ 𝛿(𝑘 − 𝑘′)and

By looking at the field observables, the states that are locally related 
to the field observables are   

Not orthogonal!



Biorthogonal quantum physics

Biorthogonal physics:

𝛼𝑛 𝛼𝑚 =  𝛿𝑛𝑚

An orthogonal basis ȁ ۧ𝛼𝑛  can be found under the standard inner 
product such that

For a chosen set of states ȁ ۧ𝛼𝑛 , a biorthogonal system 
ȁ ۧ𝛽𝑛 , ȁ ۧ𝛼𝑛  can be found such that

𝛽𝑛 𝛼𝑚 =  𝛿𝑛𝑚

Hermitian Physics:



Generalised inner products

Biorthogonal quantum 
physics

Hermitian (standard) 
quantum physics

Biorthogonal systems motivate a 
generalised inner product

𝛼𝑛
bio 𝛼𝑚 = 𝛽𝑛 𝛼𝑚

By redefining the inner product 
we can choose an alternative 
orthogonal basis. 



Biorthogonal quantum electrodynamics
Local field excitations:

Monochromatic field 
excitations:

ห ൿ1𝑠𝜆
field(𝑥, 𝑡) ห ൿ1𝑠𝜆

field(𝑥, 𝑡)bio

ȁ ۧ1𝑠𝜆(𝑘, 𝑡)

Monochromatic excitations are 
naturally biorthogonal



Photon dynamics

In a closed quantum system, the inner product must be preserved.

ห ۧ𝜓(𝑡) = 𝑈(𝑡, 0)ȁ ۧ𝜓(0) 𝑈 𝑡, 0 = exp −𝑖𝐻𝑑𝑦𝑛𝑡/ℏ

𝜓(𝑡)bio 𝜙(𝑡) = 𝜓(0)bio 𝜙(0)

Time-evolution operator:Time-evolved state:

𝐻𝑑𝑦𝑛 =  𝐻𝑑𝑦𝑛
†(bio) The bio-Hermitian conjugate is in general 

different to the standard Hermitian conjugate.



Locally-interacting Hamiltonians

The dynamical Hamiltonian for a free photon is both Hermitian and 
bio-Hermitian

𝐻𝑑𝑦𝑛 =  𝐻𝑑𝑦𝑛
bio

When there is a local field interaction, however, the Hamiltonian is bio-
Hermitian only.

𝐻𝑖𝑛𝑡 = ෍

𝑠=±1

𝑎𝑠𝜆
† 0 𝑎−𝑠𝜆

bio (0)

𝐻𝑖𝑛𝑡 ≠ 𝐻𝑖𝑛𝑡
bio



Pseudo-Hermitian operators

When we introduce a new inner product, the definition of 
Hermiticity changes

𝜓 𝜙 𝑏𝑖𝑜 = 𝜓 𝜂 𝜙 𝜂 – Hermitian operator

An operator 𝑂 is Hermitian when

𝑂𝜓 𝜙 bio = 𝜓 𝑂𝜙 bio 𝑂 =  𝜂𝑂†𝜂−1

𝑂 still has real eigenvalues even though in general 𝑂 ≠ 𝑂†



Conclusions and Remarks

Reference:
Comparing Hermitian and non-Hermitian Quantum Electrodynamics,
J. Southall, D. Hodgson, R. Purdy, and A. Beige, Symmetry 14, 1816 (2022).

• We can change the scalar product of quantum physics to make non-orthogonal state appear 
orthogonal.

• Then we also need to change Hamiltonian and observables to keep the same physical meaning and 
dynamics.

  
At the end, nothing has changed!

𝜓 𝜙 𝑏𝑖𝑜 = 𝜓 𝜂 𝜙

𝑂𝜓 𝜙 bio = 𝜓′ 𝑂 𝜓′
            

https://www.mdpi.com/2073-8994/14/9/1816
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