COMPARING HERMITIAN AND NON-HERMITIAN QUANTUM ELECTRODYNAMICS

Jake Southall, **Daniel Hodgson**, Rob Purdy and Almut Beige University of Leeds, UK King's College London, March 2025

Quantum models of light

Light is a versatile resource with many applications.

Quantum Sensing Con

Communications

Quantum algorithms

Having a complete theory is crucial for describing and understanding complex dynamics.

Image: https://www.idquantique.com/quantum-sensing/applications/materials-science/

Electromagnetism in 1D

Maxwell's equations for 1D fields in the absence of charges:

$$\frac{\partial}{\partial x} \mathcal{E}_{\mathcal{V}(\mathcal{H})}(x,t) = \pm \frac{\partial}{\partial t} \mathcal{B}_{\mathcal{H}(\mathcal{V})}(x,t)$$

$$c^{2} \frac{\partial}{\partial x} B_{H(V)}(x,t) = \pm \frac{\partial}{\partial t} E_{V(H)}(x,t)$$

c - Speed of light

H(V) – Horizontally (Vertically) polarised

James Clerk-Maxwell 1831-1879

Monochromatic states

$$C$$

$$|1_{s\lambda}(k,t)\rangle = a_{s\lambda}^{\dagger}(k,t)|0\rangle$$

 $a_{s\lambda}^{\dagger}(k,t)$ – creation operator

|0
angle - vacuum state

 $k \ge 0$

Orthogonality:

$$\langle 1_{s\lambda}(k,t) | 1_{s'\lambda'}(k',t) \rangle = \delta_{s,s'} \delta_{\lambda,\lambda'} \delta(\omega - \omega')$$

Monochromatic excitations are distinct and evolve independently.

Electromagnetic waves

Maxwell's equations describe the propagation of a wave

s = -1 s = +1 s = +1 s = +1 s = +1 for the set of the set of

Jean le Rond D'Alembert 1717-1783

Bosons localised in position (blip)

A blip is a localised excitation of the EM field.

C

 $|1_{s\lambda}(x,t)\rangle = a_{s\lambda}^{\dagger}(x,t)|0\rangle$

$$a_{s\lambda}^{\dagger}(x,t) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} e^{iskx} a_{s\lambda}^{\dagger}(k,t)$$

Increases the number of degrees of freedom

Orthogonality

$$\langle 1_{s\lambda}(x,t)|1_{s'\lambda'}(x',t)\rangle = \delta_{s,s'}\delta_{\lambda,\lambda'}\delta(x-x')$$

Blips are **localised** and evolve independently.

Position and frequency

Monochromatic waves are an ideal solution and have no defined position.

Alternatively, light can be composed of excitations that are localised.

Localised wave packet Single-photon wave packet: Normalised superposition of excitations

Aim: to construct a theoretical model of localised excitations.

Electric and magnetic field observables

The EM field observables E(x, t) and B(x, t) determine the strength of the electric and magnetic fields respectively at a position x and a time t.

$$\mathbf{E}(x,t) = \sum_{s=\pm 1}^{\infty} \int_{-\infty}^{\infty} dx' \ c \ \Re(x-x')[a_{sH}(x',t)\,\widehat{\mathbf{y}} + a_{sV}(x',t)\,\widehat{\mathbf{z}}] + \mathbf{H.c}$$

$$B(x,t) = \sum_{s=\pm 1}^{\infty} \int_{-\infty}^{\infty} dx' \ s \ \Re(x-x') [-a_{sV}(x',t) \ \widehat{\mathbf{y}} + a_{sH}(x',t) \ \widehat{\mathbf{z}}] + \text{H.c}$$

 $\hat{\mathbf{y}}, \hat{\mathbf{z}}$ - unit polarisation vectors $\Re(x - x')$ – regularisation function

 $\Re(x - x')$ determines how the field responds to blips at different positions.

Non-locality

Fourier transforms:
$$\tilde{E}(k,t) \sim \sqrt{|k|} a_{s\lambda}(k,t)$$

The regularisation function introduces non-locality:

Alternatively: Field localisation

Standard Inner product

Biorthogonal Inner product

Field localisation

By looking at the field observables, the states that are locally related to the field observables are

$$\left|1_{s\lambda}^{\text{field}}(x,t)\right\rangle = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \sqrt{|k|} e^{iskx} a_{s\lambda}^{\dagger}(k,t)|0\rangle \qquad \text{Not orthogonal!}$$

By introducing a generalised **biorthogonal inner product** we can enforce that

$$\langle 1_{s\lambda}^{\text{field}}(x,t)^{\text{bio}} | 1_{s'\lambda'}^{\text{field}}(x',t) \rangle = \delta_{ss'} \delta_{\lambda\lambda'} \delta(x-x')$$

and
$$\langle 1_{s\lambda} (k,t)^{\text{bio}} | 1_{s\lambda} (k',t) \rangle = \delta_{ss}, \delta_{\lambda\lambda}, \delta(k-k')$$

Biorthogonal quantum physics

Hermitian Physics:

An orthogonal basis $\{|\alpha_n\rangle\}$ can be found under the standard inner product such that

$$\langle \alpha_n | \alpha_m \rangle = \delta_{nm}$$

Biorthogonal physics:

For a **chosen** set of states $\{|\alpha_n\rangle\}$, a biorthogonal system $\{|\beta_n\rangle, |\alpha_n\rangle\}$ can be found such that

$$\langle \beta_n | \alpha_m \rangle = \delta_{nm}$$

Generalised inner products

Biorthogonal quantum physics

Hermitian (standard) quantum physics Biorthogonal systems motivate a generalised inner product

 $\left\langle \alpha_{n}^{\text{bio}} \middle| \alpha_{m} \right\rangle = \left\langle \beta_{n} \middle| \alpha_{m} \right\rangle$

By redefining the inner product we can choose an alternative orthogonal basis.

Biorthogonal quantum electrodynamics

Local field excitations:

$$\left|1_{s\lambda}^{\text{field}}(x,t)\right\rangle \quad \left|1_{s\lambda}^{\text{field}}(x,t)^{\text{bio}}\right\rangle$$

Monochromatic field excitations:

 $|1_{s\lambda}(k,t)\rangle$

Monochromatic excitations are naturally biorthogonal

Photon dynamics

Time-evolved state:

Time-evolution operator:

 $|\psi(t)\rangle = U(t,0)|\psi(0)\rangle$ $U(t,0) = \exp\left[-iH_{dyn}t/\hbar\right]$

In a closed quantum system, the inner product must be preserved.

 $\langle \psi(t)^{\text{bio}} | \phi(t) \rangle = \langle \psi(0)^{\text{bio}} | \phi(0) \rangle$

 $H_{dyn} = H_{dyn}^{\dagger(bio)}$

The bio-Hermitian conjugate is in general different to the standard Hermitian conjugate.

Locally-interacting Hamiltonians

The dynamical Hamiltonian for a free photon is both Hermitian and bio-Hermitian

$$H_{dyn} = H_{dyn}^{bio}$$

When there is a local field interaction, however, the Hamiltonian is bio-Hermitian only.

$$H_{int} = \sum_{s=\pm 1} a^{\dagger}_{s\lambda}(0) a^{\text{bio}}_{-s\lambda}(0)$$

 $H_{int} \neq H_{int}^{bio}$

Pseudo-Hermitian operators

When we introduce a new inner product, the definition of Hermiticity changes

$$\psi | \phi
angle^{bio} = \langle \psi | \eta | \phi
angle \qquad \eta$$
 – Hermitian operator

An operator *O* is Hermitian when

 $\langle O\psi|\phi\rangle^{\text{bio}} = \langle \psi|O\phi\rangle^{\text{bio}}$ $O = \eta O^{\dagger}\eta^{-1}$

O still has real eigenvalues even though in general $O \neq O^{\dagger}$

Conclusions and Remarks

• We can change the scalar product of quantum physics to make non-orthogonal state appear orthogonal.

$$\langle \psi | \phi \rangle^{bio} = \langle \psi | \eta | \phi \rangle$$

• Then we also need to change Hamiltonian and observables to keep the same physical meaning and dynamics.

$$\langle O\psi|\phi\rangle^{\text{bio}} = \langle \psi'|O|\psi'\rangle$$

At the end, nothing has changed!

Reference:

Comparing Hermitian and non-Hermitian Quantum Electrodynamics,

J. Southall, D. Hodgson, R. Purdy, and A. Beige, <u>Symmetry 14, 1816 (2022)</u>.