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Eigenstates of complex Hamiltonians and their adjoints

We begin by reviewing properties of eigenstates of generic complex

Hamiltonians in finite dimensions.

Let K̂ = Ĥ − iΓ̂, with Ĥ† = Ĥ and Γ̂† = Γ̂, be a complex Hamiltonian with

eigenstates {|φn〉} and eigenvalues {κn}:

K̂|φn〉 = κn|φn〉 and 〈φn|K̂† = κ̄n〈φn|. (1)

We assume for now that the eigenvalues {κn} are not degenerate.

It will be convenient to introduce eigenstates of the Hermitian adjoint

matrix K̂†:

K̂†|χn〉 = νn|χn〉 and 〈χn|K̂ = ν̄n〈χn|. (2)

Here and in what follows, a ‘Hermitian adjoint’ will be defined by the

convention that K̂† denotes the complex-conjugate transpose of K̂.
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The reason for introducing the additional states {|χn〉} is because the

eigenstates {|φn〉} of K̂ are in general not orthogonal:

〈φm|φn〉 = 2i
〈φm|Γ̂|φn〉
κ̄m − κn

= 2
〈φm|Ĥ|φn〉
κ̄m + κn

(3)

for m , n, which follows from 2iΓ̂ = K̂† − K̂ and that 2Ĥ = K̂† + K̂.

An analogous result

〈χm|χn〉 = 2i
〈χm|Γ̂|χn〉
νn − ν̄m

= 2
〈χm|Ĥ|χn〉
νn + ν̄m

(4)

holds for the eigenstates {|χn〉} of K̂†.

With the aid of the conjugate basis {|χn〉}, we can show that the

eigenstates {|φn〉} of K̂, although not orthogonal, are nevertheless

linearly independent.
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This follows from the biorthogonality relation

〈χn|φm〉 = δnm〈χn|φn〉. (5)

To see this, we note that by definitions (1) and (2) we have

〈χm|K̂|φn〉 = ν̄m〈χm|φn〉 = κn〈χm|φn〉. (6)

Hence 〈χm|φn〉 = 0 if κn , ν̄m, and κn = ν̄m if 〈χm|φn〉 , 0.

Since 〈χm|φn〉 = 0 cannot hold for all {|χm〉}, there has to be at least one

νm such that κn = ν̄m.

On the other hand, by assumption the eigenvalues are not degenerate,

so there cannot be more than one νm for which κn = ν̄m.

The linear independence implies that {|φn〉} forms a complete set of

basis forH .
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Additionally, they are minimal in that exclusion of any one of the

elements |φk〉 from the set {|φn〉} spoils completeness.

A set of basis elements that is both minimal and complete is called

exact.

In finite dimensions, the exactness of {|φn〉} implies the exactness of

{|χn〉}, whereas in infinite dimensions this no longer is the case.

Using the independence of the states {|φn〉} we can establish

∑

n

|φn〉〈χn|
〈χn|φn〉

= 1. (7)

This holds in finite dimensions away from degeneracies.

To show this, note that if 〈ψ|F̂|ψ〉 = 〈ψ|ψ〉 for any |ψ〉, then F̂ = 1.

Common trends in non-Hermitian Physics: King’s College London c© Dorje C Brody 2025



Biorthogonal Quantum Mechanics - 6 - 26 March 2025

Writing |ψ〉 = ∑
m cm|φm〉 for some {cm} we have

〈ψ|


∑

n

|φn〉〈χn|
〈χn|φn〉


 |ψ〉 =

∑

n

∑

m

c̄mcn〈φm|φn〉 = 〈ψ|ψ〉, (8)

and this establishes the claim.

The operator Π̂n defined by

Π̂n =
|φn〉〈χn|
〈χn|φn〉

(9)

thus plays the role of a projection operator satisfying Π̂nΠ̂m = δnmΠ̂n.

Although Π̂n is not Hermitian, its eigenvalues are all zero, except one

which is unity, for which the eigenstate is |φn〉.

Writing Φ̂n = |φn〉〈φn|/〈φn|φn〉 for the eigenstate projector we have

Π̂nΦ̂n = Φ̂nΠ̂n = Φ̂n. (10)

It follows, in particular, that

(1 − Π̂n)|φn〉 = (1 − Π̂†n)|χn〉 = 0. (11)
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While the complex Hamiltonian K̂ does not admit the representation∑
n κnΦ̂n, it can be expressed in the form

K̂ =
∑

n

κnΠ̂n. (12)

It follows that if we write, for an arbitrary state |ψ〉 = ∑
m cm|φm〉,

ψχn =
〈φn|ψ〉√
〈φn|χn〉

and ψ
φ
n =

〈χn|ψ〉√
〈χn|φn〉

, (13)

then we have

〈ϕ|ψ〉 =
∑

n

ϕ̄χnψ
φ
n . (14)
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Quantum probabilities

In quantum theory, the norm of a state is closely related to probabilistic

interpretations of measurement outcomes.

We fix our norm convention so that it is consistent with probabilistic

considerations of a quantum system.

The norm of the eigenvectors are often assumed to take values larger

than unity so as to ensure the following relation holds for all n:

〈χn|φn〉 = 1. (15)

Under this convention, eigenvectors will no longer be normalised.

In particular, if we assume that all eigenstates have the same Hermitian

norm so that 〈φn|φn〉 = 〈φm|φm〉 for all n,m, then we have 〈φn|φn〉 ≥ 1.

The convention 〈χn|φn〉 = 1 leads to considerable simplifications.
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In standard quantum mechanics, the ‘transition probability’ between a

pair of states |ξ〉 and |η〉 is given by 〈ξ|η〉〈η|ξ〉/〈ξ|ξ〉〈η|η〉.

Under the convention 〈χn|φn〉 = 1, however, we cannot maintain a

consistent probabilistic interpretation from this definition.

For instance, if the state of the system is in an eigenstate |φn〉 of K̂, then

on account of stationarity there cannot be a ‘transition’ into another

state |φm〉, m , n, even though 〈φm|φn〉 , 0.

To reconcile these apparent contradictions we need the introduction of

the so-called associated state that defines duality relations between

elements of the Hilbert space H and its dual space H ∗.

For an arbitrary state |ψ〉, we define the associated state |ψ̃〉 according

to the following relations:

|ψ〉 =
∑

n

cn|φn〉 ⇔ 〈ψ̃| =
∑

n

c̄n〈χn| ⇒ |ψ̃〉 =
∑

n

cn|χn〉. (16)

This determines the duality relation: |ψ〉 ∈ H ⇔ |ψ̃〉 ∈ H ∗.
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The quantum-mechanical inner product for a biorthogonal system is

thus defined as follows:

If |ψ〉 = ∑
n cn|φn〉 and |ϕ〉 = ∑

n dn|φn〉, then

〈ϕ,ψ〉 ≡ 〈ϕ̃|ψ〉 =
∑

n,m

d̄ncm〈χn|φm〉 =
∑

n

d̄ncn. (17)

Since we demand the convention that 〈χn|φn〉 = 1 for all n, we can

assume that

〈ψ̃|ψ〉 =
∑

n

c̄ncn = 1. (18)

It also follows that pn = c̄ncn defines the transition probability between

|ψ〉 and |φn〉:

pn =
〈χn|ψ〉〈ψ̃|φn〉
〈ψ̃|ψ〉〈χn|φn〉

. (19)
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The interpretation of the number pn is as follows.

If a system is in a state characterised by |ψ〉, and if a measurement is

performed on the ‘complex observable’ K̂, then the probability that the

measurement outcome taking the value κn is given by pn.

More generally, the overlap distance s between the two states |ξ〉 and

|η〉 will be defined according to the prescription:

cos2 1
2
s =
〈ξ̃|η〉〈η̃|ξ〉
〈ξ̃|ξ〉〈η̃|η〉

. (20)

A short exercise making use of the Cauchy-Schwarz inequality shows

that the right side of (20) is real, nonnegative, and lies between zero

and one, thus qualifying the required probabilistic conditions.

In particular, s = 0 only if |ξ〉 = |η〉; whereas s = π only if
∑

n c̄ndn = 0

where |ξ〉 = ∑
n cn|φn〉 and |η〉 = ∑

n dn|φn〉.
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In quantum mechanics the notion of probability is closely related to that

of distance.

To see this, suppose that |η〉 = |ξ〉 + |dξ〉 is a neighbouring state to |ξ〉.

Then we obtain the Fubini-Study line element:

ds2
= 4
〈ξ̃|ξ〉〈d̃ξ|dξ〉 − 〈ξ̃|dξ〉〈d̃ξ|ξ〉

〈ξ̃|ξ〉2
. (21)

In two dimensions, an arbitrary normalised state |ξ〉 can be expressed

in the form

|ξ〉 = cos 1
2
θ|φ1〉 + sin 1

2
θeiϕ|φ2〉. (22)

In this case we deduce

ds2
=

1
4

(
dθ2
+ sin2 θdϕ2

)
. (23)
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Observables and states

Given a fixed biorthogonal basis {|φn〉, |χn〉}, a generic observable F̂ can

be expressed in the form

F̂ =
∑

n,m

fnm|φn〉〈χm|. (24)

If Ĝ is another observable with ‘matrix’ elements gnm in the basis

{|φn〉, |χn〉}, then the matrix element of the product F̂Ĝ is just
∑

l fnlglm.

The expectation value of a generic observable F̂ |ψ〉 is

〈F̂〉 =
〈ψ̃|F̂|ψ〉
〈ψ̃|ψ〉

. (25)

If the array { fnm} in (24) is ‘biorthogonally Hermitian’ in the sense that

f̄nm = fmn, then 〈F̂〉 is real for all states |ψ〉.

Thus, the notion of Hermiticity extends naturally to the biorthogonal

setup, and we are able to speak about physical observables in the

usual sense.
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If we let |ψ〉 = ∑
n cn|φn〉, then

〈F̂〉 =
∑

n,m c̄ncm fnm∑
n c̄ncn

. (26)

In particular, if {|φn〉} are eigenstates of F̂, then we can write fnm = fnδnm,

where { fn} are the eigenvalues of F̂, hence

〈F̂〉 =
∑

n

pn fn, (27)

which is consistent with the probabilistic interpretation of the

biorthogonal system.

Now suppose that {|en〉} is an orthonormal basis ofH such that

|φn〉 =
∑

k

uk
n|ek〉, |χn〉 =

∑

k

vk
n|ek〉. (28)

Then the matrix element of the observable F̂ in this orthonormal basis is

F̂ =
∑

n,m



∑

k,l

fklu
n
k v̄m

l


 |en〉〈em|. (29)
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In this way we see more explicitly that while the reality of F̂ merely

requires Hermiticity of { fnm}, the Hermiticity of F̂ requires a more

stringent condition that∑

k,l

fklu
n
k v̄m

l =

∑

k,l

f̄klū
m
k vn

l . (30)

In particular, if F̂ is Hermitian so that F̂† = F̂, then {|en〉} can be chosen to

be |φn〉 so that un
k
= vn

k
= δn

k
and (30) reduces to the familiar condition

fnm = f̄mn.

If F̂ is symmetric, then we have vn
k
= ūn

k
, i.e. components of |χn〉 are

complex conjugates of the components of |φn〉.

The expansion coefficients {un
k
} are unique up to unitary

transformations.

The linear independence of {|φn〉} implies that {uk
n} is invertible, and the

orthonormality condition 〈χn|φm〉 = δnm implies that the inverse of {uk
n} is

given by {v̄k
n}.
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Phrased differently, if we write |φn〉 = û|en〉 and |χn〉 = v̂|en〉, then we have

v̂†û = 1.

If F̂ is real (biorthogonally Hermitian), then

F̂† = v̂v̂† F̂ ûû† = (ûû†)−1F̂ (ûû†), (31)

where ûû† is an invertible positive Hermitian operator.

As an elementary illustrative example, consider the complex 2 × 2

Hamiltonian

K̂ = σ̂x − iγσ̂z (γ2 < 1). (32)

A calculation shows that the eigenstates of K̂ and K̂†, in the region

γ2 < 1 for which the eigenvalues ±
√

1 − γ2 are real, are given by

|φ±〉 = n±

(
1

iγ ±
√

1 − γ2

)
, |χ±〉 = n∓

(
1

−iγ ±
√

1 − γ2

)
, (33)

where

n2
± = (1 ∓ iγ/

√
1 − γ2)/2. (34)
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An arbitrary observable for which the expectation value is real can be

expressed, up to trace, as a linear combination of the deformed Pauli

matrices

σ̂
γ
x =

1√
1 − γ2

(
−iγ 1

1 iγ

)
, σ̂

γ
y =

(
0 −i

i 0

)
, σ̂

γ
z =

1√
1 − γ2

(
1 iγ
iγ −1

)
. (35)

The expectation values of these Pauli matrices in a generic state

|ξ〉 = cos 1
2
θ|φ+〉 + sin 1

2
θeiϕ|φ−〉. (36)

are then given by

〈σ̂γx〉 = sinθ cosϕ, 〈σ̂γy〉 = sinθ sinϕ, 〈σ̂γz 〉 = cosθ. (37)

Note that the right-sides of these expectation values are independent of

γ, on account of the γ-dependence of the eigenstates.
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Perturbation analysis

Consider now the perturbation analysis involving complex Hamiltonians,

in the range where there are no degeneracies so that the

Rayleigh-Schrödinger series is applicable.

Let K̂ be a complex Hamiltonian with distinct eigenvalues {κn} and

biorthonormal eigenstates ({|φn〉}, {|χn〉}) that are known.

Suppose that we perturb the Hamiltonian slightly according to

K̂→ K̂ǫ = K̂ + ǫK̂′, (38)

where ǫ≪ 1 is the perturbation parameter, and K̂′ represents

perturbation energy, which may or may not be Hermitian.

Under the assumption of no degeneracies, the eigenstates {|ψn〉} and

the eigenvalues {µn} of K̂ǫ can be expanded in a power series

|ψn〉 = |φn〉 + ǫ|ψ(1)
n 〉 + ǫ2|ψ(2)

n 〉 + · · · , µn = κn + ǫµ
(1)
n + ǫ

2µ(2)
n + · · · . (39)
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Since 〈χn|φn〉 = 1, it follows that under this normalisation convention we

require

〈χn|ψ(1)
n 〉 = 〈χn|ψ(2)

n 〉 = · · · = 0. (40)

If we substitute the series expansion in the eigenvalue equation

K̂ǫ|ψn〉 = µn|ψn〉 (41)

and equate terms of different orders in ǫ, then we obtain

(κn − K̂)|φn〉 = 0, (κn − K̂)|ψ(1)
n 〉 + µ(1)

n |φn〉 = K̂′|φn〉, (42)

and so on.

Transvecting 〈χm| from the left on the second equation of (42) we obtain

(κn − κm)〈χm|ψ(1)
n 〉 + µ(1)

n δnm = 〈χm|K̂′|φn〉. (43)

Thus, for n = m we obtain the first-order perturbation correction to the

eigenvalue:

µ(1)
n = 〈χn|K̂′|φn〉. (44)
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On the other hand, for n , m we obtain

〈χm|ψ(1)
n 〉 =

1

κn − κm
〈χm|K̂′|φn〉, (45)

and on account of the completeness condition we thus find

|ψ(1)
n 〉 =

∑

m

|φm〉〈χm|ψ(1)
n 〉 =

∑

m,n

|φm〉〈χm|ψ(1)
n 〉 =

∑

m,n

〈χm|K̂′|φn〉
κn − κm

|φm〉, (46)

where we have made use of the orthogonality relations.

In the case of a Hermitian operator, a theorem of Rellich implies that

the eigenstates and eigenvalues can be expanded in a Taylor series.

For a general complex operator, the above perturbation expansion

breaks down in the vicinities of degeneracies where not only the

eigenvalues but also the corresponding eigenstates coalesce.
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Dynamics

Consider the evolution operator

Û = e−iK̂t, (47)

in units ~ = 1.

Evidently, Û is not unitary: Û†Û , 1.

However, if the eigenvalues of K̂ are real, then Û in effect is unitary in

the sense of biorthogonal quantum mechanics.

It should be apparent that the solution to the dynamical equation

i∂t|ψ〉 = K̂|ψ〉, (48)

with initial condition |ψ0〉 =
∑

n cn|φn〉, is given by

|ψt〉 =
∑

n

cne−iκnt|φn〉. (49)
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According to our conjugation rule we have

〈ψ̃t| =
∑

n

c̄neiκ̄nt〈χn| ⇒ |ψ̃t〉 =
∑

n

cne−iκnt|χn〉. (50)

The time-dependent biorthogonal norm of the state therefore is given by

〈ψ̃t|ψt〉 =
∑

n

c̄ncne−i(κn−κ̄n)t. (51)

Therefore, if the eigenvalues of K̂ are real so that κ̄n = κn, then for all

time t > 0 we have 〈ψ̃t|ψt〉 = 〈ψ̃0|ψ0〉.

More generally, if κ̄n = κn, and if |ϕt〉 is also a solution to the

Schrödinger equation with a different initial condition, then for all t > 0

〈ϕ̃t|ψt〉 = 〈ϕ̃0|ψ0〉. (52)

It follows that:

Proposition 1. If the eigenvalues of K̂ are real, then the time evolution

operator e−iK̂t is unitary with respect to the biorthogonal basis of K̂,
preserving the biorthogonal norms of the states and the transition
probabilities between states.
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When one or more of the eigenvalues are imaginary or complex, we

have different characteristics for the dynamical behaviour.

Let us write

κn = En − iγn (53)

for the eigenvalues, where {En} and {γn} are real.

Then we have

〈ψ̃t|ψt〉 =
∑

n

c̄ncne−2γnt
= c̄n∗cn∗e

−2γn∗t


1 +

∑

n,n∗

c̄ncn

c̄n∗cn∗
e−2(γn−γn∗)t


 , (54)

where n∗ is the value of n such that γn has the smallest value.

In most physical setups, γn ≥ 0, and an arbitrary initial state will decay

into the state with the smallest γn value.

This situation describes the behaviour of a particle trapped in a finite

potential well; the norm 〈ψ̃t|ψt〉 then describes the probability that the

particle has not tunnelled out of the well.
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Relation to PT symmetry

If we write 1̂ = (ûû†)−1, then on account of

|φn〉 =
∑

k

uk
n|ek〉, |χn〉 =

∑

k

vk
n|ek〉 (55)

we have

〈en|en〉 = 〈φn|1̂|φn〉 (56)

for all n.

Here 1̂ by construction is an invertible positive Hermitian operator,

which is unique and can be determined from the eigenstates:

1̂
−1
=

∑

n

|φn〉〈φn|. (57)

In addition, observe, for all n, that

〈φn|1̂2|φn〉 = 〈en|(û−1)†û−1(û−1)†û−1|en〉 = 〈en|û−1(û−1)†|en〉 = 〈χn|χn〉, (58)

but 〈χn|χn〉 = 〈φn|φn〉, so 1̂ is an involution:

1̂
2
= 1. (59)
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Perceived from the viewpoint of Hermitian inner-product space,

therefore, the operator 1̂ plays the role of a ‘metric’ for the Hilbert space.

For example, the expectation value of a physical observable F̂ can be

written in the form

〈ψ̃|F̂|ψ〉
〈ψ̃|ψ〉

=
〈ψ|1̂F̂|ψ〉
〈ψ|1̂|ψ〉 (60)

that involves the metric operator under the Hermitian pairing.

We see therefore that biorthogonal quantum mechanics can

alternatively be viewed as ‘conventional’ Hermitian quantum mechanics,

but where Hilbert space is endowed with a nontrivial metric operator 1̂.

This metric is the so-called “metric operator” in PT-symmetric quantum

theory.
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Complex degeneracies:

In the case of a Hermitian Hamiltonian, the first-order perturbation

breaks down near degeneracies, and one has to consider higher orders.

In the case of a complex Hamiltonian, the situation is more severe on

account of the fact that the Rayleigh-Schrödinger perturbation theory

breaks down altogether in the vicinities of exceptional points.

Nevertheless, for a given Hamiltonian one can expand the eigenstates

and eigenvalues in the form of Newton-Puiseux series.

Let us illustrate how such an analysis can be applied to deduce the

nature of geometric singularities close to exceptional points.

At an exceptional point two or more eigenvalues and the corresponding

eigenstates coalesce, that is, the Hamiltonian is not diagonalisable.

Here we consider the most common case, where two eigenvalues and

the corresponding eigenstates coalesce.
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At such an exceptional point there is a two-fold degenerate eigenvalue

κEP and a single eigenvector |φEP〉, which is orthogonal to the

corresponding left eigenvector: 〈χEP|φEP〉 = 0.

However, one can define an associated vector, the so-called Jordan

vector, denoted |φJ
EP
〉, fulfilling the relation

K̂|φJ
EP
〉 = κEP|φJ

EP
〉 + |φEP〉. (61)

Similarly the left Jordan vector can be defined according to the relation

K̂†|χJ
EP
〉 = κ̄EP|χJ

EP
〉 + |χEP〉. (62)

The Jordan vector |φJ
EP
〉 and the eigenvector |φEP〉 span the

two-dimensional eigenspace corresponding to the degenerate

eigenvalue κEP.

Note that the Jordan vector is not uniquely defined by equation (61).

However, the ambiguity can be removed by choosing appropriate

normalisation conditions.
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In fact, it will be convenient to normalise the states such that

〈χEP|φJ
EP
〉 = 〈χJ

EP
|φEP〉 = 1, (63)

and that

〈χJ
EP
|φJ

EP
〉 = 0. (64)

The conventional Rayleigh-Schrödinger perturbation theory breaks

down around an exceptional point, and in general the eigenvalues and

eigenvectors are not analytic functions of the perturbation parameter.

That is, they cannot be expanded in a Taylor series.

In the general case they can nevertheless be expanded into a power

series with broken rational exponents, which is known as a Puiseux

series.

The most common behaviour around an exceptional point at which two

eigenvectors coalesce is that the eigenvalues and eigenvectors can be

expanded in a power series with half-integral exponents.
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Let ǫ≪ 1 denote a small perturbation parameter that measures the

deviation away from the exceptional point.

Expanding the Hamiltonian, the eigenvalues and eigenvectors in lowest

order in ǫ in the eigenvalue equation yields

(K̂EP+ǫK̂
′
+ · · · )(|φEP〉+ |φ′〉ǫ

1
2 + · · · ) = (κEP+κ

′ǫ
1
2 + · · · )(|φEP〉+ |φ′〉ǫ

1
2 + · · · )

(65)

Equating terms corresponding to different powers of ǫ we find that the

two eigenstates |φ±〉 can be expanded in the form:

|φ±〉 = n
(
|φEP〉 + κ′± ǫ

1
2 |φJ

EP
〉 +O(ǫ)

)
, (66)

where

κ′± = ±
√
〈χEP|K̂′|φEP〉. (67)

A perturbative expression similar to (66) holds for the left eigenvector.

It is convenient to normalise these vectors according to the usual

biorthogonal convention away from the exceptional point: 〈χ±|φ±〉 = 1.
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From this we find that

|φ±〉 ≈
1√

2κ′ǫ1/4

(
|φEP〉 + κ′ ǫ

1
2 |φJ

EP
〉
)

(68)

and that

〈χ±| ≈
1√

2κ′ǫ1/4

(
〈χEP| + κ′ ǫ

1
2 〈χJ

EP
|
)
. (69)

A calculation then shows that

|dφ+〉 =
1

4
√
κ′

(
−ǫ−5

4 |φEP〉 + κ′ ǫ−
3
4 |φJ

EP
〉
)

dǫ =
1

4ǫ
|φ−〉dǫ, (70)

and hence that

〈d̃φ+| =
1

4ǫ
〈χ−|dǫ. (71)

From these we thus find the expression of the metric close to an

exceptional point of second order where two eigenstates coalesce:

G =
1

4ǫ2
. (72)

It should be remarked that this result is generic, i.e. it is independent of

the model.
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Dynamics revisited

An alternative way of viewing the dynamics is to write

d|ψ〉
dt
= −i(H − 〈H〉)|ψ〉 − (Γ − 〈Γ〉)|ψ〉. (73)

As an example consider the Hamiltonian K̂ = σ̂x − iσ̂z. Then for the

dynamics we have the following.

(a) unbroken phase (b) broken phase
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We can ask if there is an analogue of Wigner’s theorem when the

generator of the dynamics is not Hermitian.

In this case, an analysis shows that

(a) The resulting motion generates a holomorphic vector field;

(b) Every holomorphic vector field on the state space arises from such a

Hamiltonian;

(c) The symmetry group of the motion is that associated with

holomorphically projective transformations that map complex

geodesics to complex geodesics; and

(d) Every map that preserves complex geodesics on the state space

must arise from a Hamiltonian K̂ that is not necessarily Hermitian.
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Towards infinite dimensions

Already in quantum mechanics based on conventional Hermitian

operators there are subtleties in going from finite to infinite-dimensional

Hilbert spaces.

It should be clear that the matter does not improve when considering

quantum mechanics beyond Hermitian operators.

Indeed, the following simple example illustrates how a completeness

statement of biorthogonal quantum mechanics that holds true in finite

dimensions can easily fail in infinite dimensions.

Consider an infinite-dimensional Hilbert spaceH and an orthonormal

set of basis {|en〉} in H .

Construct a new set of basis elements {|φn〉} according to

|φn〉 = |e1〉 + |en〉 (74)

for n = 2, 3, . . . ,∞.
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Elements of {|φn〉} are not orthogonal, but the set is complete:

lim
N→∞

1

N − 1

N∑

n=2

|φn〉 = |e1〉 + lim
N→∞

1

N − 1

N∑

n=2

|en〉 = |e1〉. (75)

The biorthogonal pair of |φn〉 is unique and is given by

|χn〉 = |en〉 (76)

for n = 2, 3, . . . ,∞.

So we have 〈χn|φm〉 = δnm.

While the set {|φn〉} is complete, its biorthogonal counterpart {|χn〉} is

not—a phenomenon that has no analogue in finite dimensions.

Thus, if K̂ =
∑

n κn|φn〉〈χn| is a Hamiltonian operator acting on the states

ofH , then we can form a linear combination of the eigenstates of K̂ that

has a null conjugate state:

〈ẽ1|e1〉 = 0. (77)
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If we interpret the norm as representing the probability of finding a

particle in the system, then we have a ‘no-particle’ state |e1〉 that

nevertheless has nonzero energy expectation value.

Even if a biorthonormal set ({|φn〉}, {|χn〉}) is complete, there can be

various subtleties arising from the lack of a bounded map that takes an

element |φn〉 into |en〉.

Specifically, suppose that ({|φn〉}, {|χn〉}) is a complete biorthonormal set

of bases in H = L2 of square-integrable functions.

Then the set {|φn〉} is called a ‘Fischer-Riesz’ basis if

(a) for any |ψ〉 ∈ H we have
∑

n |〈χn|ψ〉|2 < ∞; and

(b) if for any sequence {cn} such that
∑

n |cn|2 < ∞ there exists a |ψ〉 ∈ H
for which 〈χn|ψ〉 = cn.
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A theorem of Bari then shows that:

(i) {|χn〉} is a Fischer-Riesz basis if and only if there exists a bounded

invertible linear operator û−1 and a complete orthonormal basis

elements {|en〉} in H such that û−1|φn〉 = |en〉; and that

(ii) {|φn〉} is a Fischer-Riesz basis if and only if there exists a positive

bounded invertible linear operator 1̂−1 in H such that |φn〉 = 1̂−1|χn〉.

In infinite dimensions, a generic complex Hamiltonian K̂ possessing real

eigenvalues often do not admit an invertible bounded metric operator 1̂.

This implies that a system described by such a Hamiltonian is

intrinsically different from that described by a Hermitian Hamiltonian,

even if the eigenvalues coincide.

But sometimes one can find interesting nontrivial examples where

these conditions are satisfied.
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Consider the Hamiltonian

Ĥ =
1

1 − e−ip̂

(
x̂p̂ + p̂x̂

)
(1 − e−ip̂) (78)

defined on L2(R+).

The eigenfunctions of Ĥ are given by

ψn(x) = −ζ(zn, x + 1) (79)

and the eigenvalues are given by

En = i(2zn − 1), (80)

where ζ(z, x) is the Hurwitz zeta function, and zn are the nontrivial zeros

of the Riemann zeta function on the critical line.

In this example, we can show that the transformation operator

(1 − e−ip̂)−1 is bounded and invertible.

It then follows that Ĥ is self-adjoint, i.e. its eigenvalues are real.
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